
Hacksaw: Hardware-Centric Kernel Debloating via
Device Inventory and Dependency Analysis

Zhenghao Hu
∗

New York University

Sangho Lee

Microsoft Research

Marcus Peinado

Microsoft Research

ABSTRACT

Kernel debloating is a practical mechanism to mitigate the security

problems of the operating system kernel by reducing its attack sur-

face. Existing kernel debloating mechanisms focus on specializing

a kernel to run a target application based on its dynamic traces col-

lected in the past—they remove functions from the kernel which are

not used by the application according to the traces. However, since

the dynamic traces do not ensure full coverage, false removals of

required functions are unavoidable. This paper proposes Hacksaw,

a novel mechanism to debloat a kernel for a target machine based

on its hardware device inventory. Hacksaw accurately debloats a

kernel without false removals because figuring out which hardware

components are attached to the machine as well as which device dri-

vers manage them is comprehensive and deterministic. Hacksaw

removes not only inoperative device drivers that do not control

any attached hardware components but also other kernel modules

and functions which are associated with the inoperative drivers

according to three dependency analysis approaches: call-graph,

driver-model, and compilation-unit analyses. Our evaluation shows

that Hacksaw effectively removes inoperative kernel modules and

functions (i.e., their respective reduction ratios are 45% and 30% on

average) while ensuring validity and compatibility.

ACM Reference Format:

Zhenghao Hu, Sangho Lee, and Marcus Peinado. 2023.Hacksaw: Hardware-

Centric Kernel Debloating via Device Inventory and Dependency Analysis.

In Proceedings of Proceedings of the 2023 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS ’23). ACM, New York, NY, USA,

15 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Securing the operating system kernel against potential attacks is

challenging. Existing monolithic kernels for general-purpose com-

puting machines (e.g., Linux and Windows kernels) are extremely

complex in order to support diverse user software through system

calls and various hardware devices through kernel device drivers.

The Linux kernel currently provides around 300 system calls and

supports around 9,000 device drivers [41]—making it free from

security vulnerabilities is almost impossible. For example, more

∗
Work done while this author was an intern at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark
© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

than 1,000 and 2,500 CVEs have been reported in the Linux ker-

nel and Windows 10 from 2018 to 2022, respectively [23, 24]. To

this end, kernel developers and researchers have proposed various

mechanisms to reduce the kernel’s attack surface (e.g., system call

filtering [85] and resource isolation [72]) as well as to detect and

eliminate its bugs (e.g., fuzzing and sanitization [82]).

Software-based kernel debloating [2, 36, 37, 40, 45–47, 53, 87, 88]

is a popular approach to reduce the kernel attack surface. It is based

on an empirical observation that a general-purpose kernel provides

many functions or features (e.g., system calls, network protocols)

that a certain application does not use at all. Thus, if it only needs

to run a target application, it specializes a kernel for the application

by removing the kernel functions that the application does not use.

In general, it deals with unnecessary kernel functions in three steps.

First, it runs a target application in a certain environment with

given test cases to collect the application’s execution traces related

to kernel functions. Second, it analyzes the collected execution

traces to identify unused kernel functions. Third, it removes them

from the kernel to secure run the target application in the future.

Unfortunately, the software-based kernel debloating has a funda-

mental limitation: its accuracy heavily depends on the coverage of

test cases. Narrow test cases fail tomake a target application interact

with enough kernel functions (e.g., deep, stateful, or environment-

specific functions), resulting in incomplete execution traces and

thus false removals of necessary functions [45, 54]. Executing the

target application with such an over-debloated kernel can result in

application or system crashes. Several mechanisms [36, 88] mitigate

this problem to some extent (e.g., maintaining fallback paths), but

false removal is still unavoidable.

In this paper, we consider the kernel debloating problem from

a completely different angle—we specialize a kernel for a target

machine which runs the kernel based on its hardware components.

This new angle allows us to accurately debloat the kernel without

false removals. Modern machines provide comprehensive and de-

terministic mechanisms to identify which hardware components

are attached to them [86]. This results in a list of hardware iden-

tifiers (IDs) and descriptions which we call device inventory. We

can use the device inventory to figure out whether certain device

drivers are necessary. This is accurate because, unlike the system

calls for arbitrary applications, device drivers are written for spe-

cific hardware devices they support which are well specified using

hardware IDs. Further, we deal with not only (unnecessary) device

drivers but also other kernel modules and functions that depend on
the drivers in order to be loaded or operate. For example, a recent

attack against the rdma-core package [35] exploits the vulnerabili-

ties residing in iSCSI kernel modules which can be triggered when

they interact with an InfiniBand device driver even when there is

no InfiniBand hardware. Also, a recent attack against the vsock

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Zhenghao Hu, Sangho Lee, and Marcus Peinado

kernel module [66] can be triggered even if there is no underlying

hypervisor providing a corresponding virtual socket device.

We propose Hacksaw, a hardware-centric kernel debloating

mechanism based on device inventory and dependency analysis.

Hacksaw identifies and removes inoperative kernel functions based
on a target machine’s device inventory including CPU, PCI, USB,

and other peripheral devices that are attached to the machine (both

physical and virtual devices). Without the corresponding hard-

ware components, these kernel functions do not properly operate.

Through dependency analysis, Hacksaw discovers and removes

those inoperative kernel functions including not only device drivers

which directly manage certain hardware components but also other

kernel modules and functions which are associated with the device

drivers. This allows Hacksaw to mitigate both hardware-driven

and software-driven vulnerabilities which can be triggered even

without actual hardware components.

Hacksaw consists of four procedures: 1) identify device drivers

within a target operating system kernel, 2) construct a hardware-

centric dependency graph based on the identified drivers and the

offline analysis of the target kernel, 3) probe a target machine’s

hardware components, and 4) remove inoperative kernel functions

from the target kernel using the graph and the probing result.

Hacksaw first identifies the separate and built-in drivers that

a target kernel supports based on whether they contain hardware

IDs for device matching (i.e., vendor and device IDs) [34, 65].

Next,Hacksaw constructs a hardware-centric dependency graph

which is a directed graph among kernel functions related to the

identified device drivers. Hacksaw initializes the graph using the

identified drivers’ functions as vertices while creating directed

edges based on their dependencies. Then, it analyzes other kernel

functions not in the graph to check whether they depend on any

function in the graph and whether any function in the graph de-

pends on them. If they do, it adds them into the graph while creating

directed edges accordingly. Hacksaw repeats this until there are

no more kernel functions to add. Hacksaw considers three kinds

of dependency information: 1) call-graph information (i.e., function

caller or callee), 2) driver-model information (i.e., driver bus and

device class dependency), and 3) compilation-unit information (i.e.,

build system and configuration dependency). While constructing

the graph, Hacksaw ignores any indirectly callable functions (e.g.,

functions whose addresses are taken) to avoid false removals.

Then, Hacksaw compiles the device inventory of a target ma-

chine by probing attached hardware components through the kernel

and firmware (BIOS/UEFI) and, finally, it uses both the hardware-

centric dependency graph and the device inventory to identify and

remove inoperative kernel functions. In particular, it first marks

functions in the graph which are associated with the inoperative

device drivers according to the device inventory. Then, it propa-

gates the inoperative marks throughout the graph based on the

dependency and propagation rules: 1) mark a function if it depends

on the marked functions and 2) mark a function if all functions

depending on it are marked. In the end, it removes all marked func-

tions by deleting corresponding driver or module files and rewriting

corresponding functions in the kernel image or modules. It does

not delete any functions not in the graph to avoid false removals.

We prototypeHacksaw for the Linux kernel. We use LLVM [48]

for the static analysis of Linux kernel source code and kmax [28] to

analyze its build system—Kbuild [11] and Makefile [10]. We further

use Z3 [19] to identify build configuration dependencies between

object or module files. In addition, we write Python and shell scripts

for various other tasks including hardware probing, graph analysis,

binary patching, and file removal.

We evaluateHacksaw on popular environmentswith predictable

hardware configurations: virtual machine instances in three public

cloud services (Amazon, Azure, and Google) and two hypervisors

(Hyper-V and KVM). We run Hacksaw against 12 different Linux

system images (five bare-metal images and seven cloud images)

to debloat them according to the probed hardware configurations.

Note that we use these virtual machine instances because they have

deterministic hardware profiles and are widely used. Hacksaw

works for any bare-metal and virtual machines. We confirm that,

on average, Hacksaw removes 45.0% of the kernel module files in

the system image (i.e., root file system) and 30.0% of the functions in

the kernel images. This removal mitigates 47.4% of CVEs related to

drivers or modules. Further, we empirically confirm that Hacksaw

does not introduce compatibility problems. It runs seven real-world

test applications from the Phoronix Test Suite [64] without errors

and passes all Linux Test Project (LTP) tests [50].

This paper makes the following contributions:

• Hacksaw is the first system which debloats the kernel based

on the device inventory and dependency with no false removal.

• Hacksaw comprehensively and systematically analyzes the

call-graph, driver-model, and compilation-unit dependency of

the Linux kernel based on device drivers.

• Hacksaw effective reduces kernel attack surface and mitigates

vulnerabilities while ensuring validity and compatibility.

Hacksaw is available at https://github.com/microsoft/Hacksaw.

2 BACKGROUND: DEVICE DRIVER MODEL

This section explains the Linux device driver model [17, 83]. Other

operating systems, such as Windows, have a similar driver model.

2.1 Basic Entities

Hardware device. A hardware device is a physical or virtual

peripheral device attached to a computing machine. It embeds

a unique hardware ID [34, 65] to be identified and managed by

the kernel or firmware. For example, the configuration space of

PCI devices contains the vendor ID and device ID registers [62].

The kernel uses a hardware discovery mechanism, such as the

Advanced Configuration and Power Interface (ACPI) [86] and the

Open Firmware (OF) device tree [20], to retrieve such information.

Hardware bus. A hardware bus is a hardware channel to connect

peripheral devices to a machine. A machine typically has multiple

buses with different types (e.g., PCI and USB) to manage devices

with specific hardware interfaces. Once a machine boots up, the

kernel enumerates every bus—with the help of BIOS/UEFI and

ACPI—to detect every device attached to the machine.

Device driver. A device driver is a piece of kernel code to interact

with devices to control them or exchange data with them. It has an

ID table containing the hardware IDs of devices that it supports for

device matching. A device driver can have different ID tables if it

supports devices belonging to different buses.

https://github.com/microsoft/Hacksaw

Hacksaw: Hardware-Centric Kernel Debloating via Device Inventory and Dependency Analysis CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Bus driver and type. A bus driver is a special device driver to man-

age a certain hardware bus as well as devices and drivers belonging

to the bus. If the kernel recognizes a hardware bus, it loads the

corresponding bus driver to register the bus with the kernel (i.e.,

invoke bus_register()) to create the kernel data structures for

each bus type including lists of detected devices and loaded drivers.

Device class. A device class is a logical group of hardware de-

vices providing similar functionalities and interfaces like input,

InfiniBand, and Trusted Platform Module (TPM) regardless of their

hardware buses. This abstraction allows the kernel to control simi-

lar devices with unified kernel functions. Typically, a class driver

(or a library driver for class management) registers a new class (i.e.,

invoke class_register()) and defines a function for assigning a

device to a certain device class, which will be invoked by drivers

during their initialization or hardware probing.

2.2 Device/Driver Binding and Registration

Driver binding. Driver binding is a procedure to associate a device

with a device driver [42]. If the kernel detects a device during bus

enumeration, it looks up a device driver that can handle the device.

To this end, it retrieves the hardware ID from the device and then

checks device drivers (for the corresponding bus type) in the system

to see whether the retrieved hardware ID matches an entry of their

ID tables. It binds the device and the driver if their hardware IDs

are matched. This device binding can be done with the device

drivers already loaded in the kernel memory or device drivers in

the file system (i.e., Loadable Kernel Modules (LKMs)) which can

be automatically loaded according to their modalias [75].

Driver entry point. A device driver has an entry-point or initial-

ization function to register itself with the kernel. The entry-point

function of a device driver is invoked by the kernel when it loads

the driver at the end of driver binding. To enable this invocation,

the entry-point function is exported to the outside with a specific or

predictable symbol (e.g., init_module() for LKM drivers) such that

the kernel can easily find and call it. In addition, some device drivers

perform hardware checks and initialization inside their entry point

functions.

Device/driver registration. Devices and drivers which are bound

and initialized are registered with the kernel core. Two main kernel

functions for this registration are device_register() (or device_add())

and driver_register(). device_register() expects a device struc-

ture containing device information, bus type, and device class as an

argument. driver_register() expects a driver structure contain-

ing driver information and bus type as an argument.

Instead of invoking these low-level registration functions di-

rectly, device drivers rely on custom registration functions defined

in the corresponding bus and class drivers which further define the

bus type and device class data structures, respectively. For example,

during initialization, USB drivers invoke usb_register_driver()

defined in the USB bus driver, usbcore, which eventually calls

driver_register() to register the drivers with the kernel along

with usb_bus_type defined in usbcore (Figure 1). InfiniBand dri-

vers invoke ib_register_device() (e.g., in the probe function) de-

fined in the InfiniBand class driver, ib_core, which eventually calls

device_add() to register the device with the kernel with ib_class

defined in ib_core (Figure 2).

1 /* drivers/usb/core/driver.c */
2 struct bus_type usb_bus_type = { /* USB bus type */
3 .name = "usb",
4 .match = usb_device_match,
5 .uevent = usb_uevent,
6 .need_parent_lock = true,
7 };
8 int usb_register_driver(struct usb_driver *new_driver ,
9 struct module *owner, const char *mod_name) {
10 ...
11 new_driver->drvwrap.driver.bus = &usb_bus_type ; /* specify bus type */

12 retval = driver_register(&new_driver->drvwrap.driver);
13 ...
14 }
15 EXPORT_SYMBOL_GPL(usb_register_driver);
16

17 /* drivers/usb/core/usb.c */
18 static int __init usb_init(void) { /* USB bus entry point */
19 ...
20 retval = bus_register(&usb_bus_type);
21 ...
22 }
23 subsys_initcall(usb_init);

(a) Part of USB bus driver (usbcore) code.
1 /* drivers/bluetooth/ath3k.c */
2 static const struct usb_device_id ath3k_table[] = { /* ID table */
3 { USB_DEVICE(0x0CF3, 0x3000) },
4 ...
5 };
6 static struct usb_driver ath3k_driver = { /* USB driver structure */
7 .name = "ath3k",
8 .probe = ath3k_probe,
9 .disconnect = ath3k_disconnect,
10 .id_table = ath3k_table ,

11 .disable_hub_initiated_lpm = 1,
12 };
13 module_usb_driver(ath3k_driver); /* entry point */
14

15 /* include/linux/usb.h */
16 #define usb_register(driver) \
17 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
18 #define module_usb_driver(__usb_driver) \
19 module_driver(__usb_driver, usb_register, usb_deregister)

(b) Part of USB Bluetooth device driver (ath3k) code.

Figure 1: Driver registration with the USB bus.

2.3 Driver Compilation and Loading

Separate and built-in driver. A device driver can be compiled

as a separate file (i.e., an LKM) or statically compiled into the ker-

nel image (i.e., a built-in driver). If a device driver is compiled

as an LKM, its ID tables are translated into modalias [71], like

pci:v00001002d00001304sv*sd*bc*sc*i* for an AMD GPU (ven-

dor ID: 0x1002, device ID: 0x1304), and stored in the module’s

metadata area. An LKM driver can be dynamically loaded into the

kernel memory due to driver binding, system configuration (e.g.,

systemd-modules-load.service), or user request (e.g., modprobe).

A built-in driver is embedded into the kernel image, so it is

loaded and initialized during the early boot phase. Since the built-in

driver does not separately maintain metadata (i.e., it does not have

modalias), figuring out its hardware IDs is challenging. Also, to

avoid symbol conflicts (i.e., having multiple init_module() in the

kernel image), the name of the entry-point function of every built-in

driver is mangled. For example, the Linux kernel mangles built-

in entry-point function names based on the original driver names

and the entry-point function names (§5.1), like in this XenBus entry-

point function __initcall__kmod_xenbus__291_1067_xenbus_init2().

Platform device and driver. A platform device is a special hard-

ware device whose drivermust be statically compiled into the kernel

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Zhenghao Hu, Sangho Lee, and Marcus Peinado

1 /* drivers/infiniband/core/device.c */
2 static struct class ib_class = { /* InfiniBand device class */
3 .name = "infiniband",
4 .dev_release = ib_device_release,
5 .dev_uevent = ib_device_uevent,
6 .ns_type = &net_ns_type_operations,
7 .namespace = net_namespace,
8 };
9 static noinline void rdma_init_coredev(struct ib_core_device *coredev ,
10 struct ib_device *dev, struct net *net) {
11 ...
12 coredev->dev.class = &ib_class ; /* specify device class */
13 ...
14 }
15 struct ib_device *_ib_alloc_device(size_t size) {
16 ...
17 rdma_init_coredev(&device->coredev , device, &init_net);
18 ...
19 return device ;
20 }
21 int ib_register_device(struct ib_device *device , const char *name,
22 struct device *dma_device) {
23 ...
24 ret = device_add(&device->dev);
25 ...
26 }
27 static int __init ib_core_init(void) { /* InfiniBand class entry point */
28 ...
29 ret = class_register(&ib_class);
30 ...
31 }
32 fs_initcall(ib_core_init);

(a) Part of InfiniBand class driver (ib_core) code.
1 /* drivers/infiniband/hw/mlx5/main.c */
2 static int mlx5_ib_stage_ib_reg_init(struct mlx5_ib_dev *dev) {
3 ...
4 return ib_register_device(&dev->ib_dev , name, &dev->mdev->pdev->dev);
5 }
6 static int mlx5r_probe(struct auxiliary_device *adev,
7 const struct auxiliary_device_id *id) {
8 ...
9 dev = ib_alloc_device(mlx5_ib_dev, ib_dev); /* dev struct w/ ib_class */

10 ret = mlx5_ib_stage_ib_reg_init(dev); /* simplified */
11 ...
12 }
13 static int __init mlx5_ib_init(void) { /* entry point */
14 ...
15 ret = auxiliary_driver_register(&mlx5r_driver);
16 ...
17 }
18 module_init(mlx5_ib_init);
19

20 /* /include/rdma/ib_verbs.h */
21 #define ib_alloc_device(drv_struct, member) \
22 container_of(_ib_alloc_device(sizeof(struct drv_struct) + ...))

(b) Part of InfiniBand device driver (mlx5_ib) code.

Figure 2: Device registration with the InfiniBand class.

image [84]. The platform device includes essential hardware de-

vices (e.g., ACPI, PCI switch) and para-virtualization stacks (e.g.,

Hyper-V, KVM, and Xen) that must be initialized in advance to allow

the kernel to load LKMs (from block storage), and legacy or System-

on-Chip (SoC) hardware components without an enumerable bus

for which the kernel cannot perform the driver binding.

Driver loading and symbol dependency. In Linux, an LKM

(both device driver and software module) cannot be loaded into the

kernel memory unless all its symbol dependencies are resolved [4].

In particular, an LKM can have a number of undefined symbols

which implies that it depends on functions or global variables de-

fined in the kernel image or other modules. For example, during

initialization, device drivers will invoke bus-specific driver registra-

tion functions defined in the corresponding bus drivers. Thus, the

kernel must load bus drivers into its memory before loading any

other device drivers depending on them. While building the kernel,

the build system figures out all such symbol dependencies between

LKMs and creates a database file called modules.dep. Later, when

the kernel or a privileged user is trying to load an LKM (e.g., using

modprobe), modules.dep is inspected to load all ancestor modules

before loading the target module.

3 THREAT MODEL AND ASSUMPTION

This paper considers a non-privileged adversary who aims to com-

promise the operating system kernel through exploiting its security

vulnerabilities. In particular, the kernel might contain device dri-

vers which have unknown or unpatched security vulnerabilities or

are associated with other vulnerable kernel modules or functions.

These vulnerable drivers, modules, or functions can be loaded into

the kernel address space during the boot process because they are

built into the kernel image or automatically loaded via the configu-

ration or user-space activities [5, 16, 35, 66, 75]. The adversary can

exploit them to eventually compromise the entire kernel.

We make the following assumptions. First, the operating sys-

tem kernel can reliably probe the underlying hardware devices.

For example, it can rely on BIOS/UEFI and ACPI as well as the

hypervisor if the machine is virtualized to enumerate all hardware

devices. This ground-truth information becomes our basis to dis-

tinguish operative device drivers (i.e., drivers with corresponding

hardware devices) from inoperative device drivers (i.e., drivers with-

out corresponding hardware devices). Second, we have access to

the kernel source code (including device drivers and modules) and

build configuration options of the target system images to debloat.

4 DESIGN

In this section, we describe the design ofHacksaw.Hacksaw aims

to accurately reduce the kernel attack surface without false re-

movals by identifying inoperative device drivers based on the hard-

ware device inventory information and other kernel modules and

kernel functions which tightly depend on the inoperative drivers.

Figure 3 shows an overview of Hacksaw, which consists of four

major tasks:

• T1. Identify device drivers from the kernel source (§4.1)

• T2. Analyze the dependencies between the identified device

drivers and other kernel components to construct a hardware-

centric dependency graph (§4.2)

• T3. Figure out the device inventory of a target machine (§4.3)

• T4. Remove inoperative device drivers and kernel functions

based on the dependency graph and device inventory (§4.4)

4.1 Device Driver Lookup (T1)

Hacksaw identifies device drivers from the Linux kernel source,

which it can safely delete if no corresponding hardware device is

attached to the machine. Device drivers have ID tables containing

the hardware IDs to perform the device binding (§2). Therefore, we

aim to identify ID tables contained in source code files, object files,

and LKMs to identify device drivers.

Separate driver. Figuring out whether an LKM is a device driver

is straightforward because, if it is, its metadata contains modalias

which is converted from ID tables through the MODULE_DEVICE_TABLE()

Hacksaw: Hardware-Centric Kernel Debloating via Device Inventory and Dependency Analysis CCS ’23, November 26–30, 2023, Copenhagen, Denmark

T2: Dependency analysis

T4:Function removal

Call graph

Compilation unit

Driver modelPristine
kernel

Mark
Propagation

Module/function
removal

Device inventory

Driver function
Kernel function
Inoperative function
Normal function

Dependency graph

T1: Device
driver lookup

T3: Hardware
probing

Debloated
kernel

Figure 3: Overview of Hacksaw.

macro and the depmod command. Unfortunately, this technique does

not work for built-in device drivers (e.g., for platform devices).

Built-in driver. We design a static-analysis algorithm to iden-

tify built-in device drivers and their hardware IDs from the kernel

source. This algorithm is inspired by the device/driver registration

procedure (§2). During the loading of a device driver, the kernel

invokes the driver’s entry-point function which will eventually in-

voke the custom device/driver registration functions (defined in its

class or bus driver) whose arguments are data structures containing

its hardware IDs (e.g., its ID table). Therefore, to detect built-in

device drivers, our algorithm first finds entry-point functions and

custom device/driver registration functions from the kernel source.

Then, for each pair of entry-point function and custom registration

function, it checks whether there is an explicit control flow (i.e.,

no indirect jump and call) from the entry-point function to the

registration function along with its hardware IDs as an argument.

If there is, the algorithm treats the function as a driver entry-point

function and collects its hardware IDs.

Identify entry-point function: Identifying entry-point functions is
straightforward because all entry-point functions are mapped to

specific symbols to be invoked by the kernel. They will be mangled

if they are embedded into the kernel image, but it is deterministic.

Identify custom device/driver registration: Our algorithm is based

on two observations to accurately identify custom device and dri-

ver registration functions. First, as mentioned in §2, devices and

drivers must be eventually registered with the kernel core through

device_register()/device_add() and driver_register(), respec-

tively. Therefore, every custom registration function will call them

at the end. Second, these registration functions are expected to be

invoked by external entities (i.e., device drivers), so they must be

globally callable (i.e., their symbols are exported.) Based on these

two observations, we detect global functions which eventually call

device_register() and/or driver_register().

Control flow and hardware ID: Once we identify entry-point and

custom registration functions, we check the explicit control flows

from entry-point functions to custom registration functions. While

checking such a control flow, we perform a backward slicing start-

ing from the registration function call to the entry-point function

to extract the hardware IDs. The device/driver registration func-

tions expect an argument for a device or driver structure containing

hardware IDs. This data structure is well specified, so we check its

field containing hardware ID to conduct the backward slicing.

However, this algorithm has a limitation: it only identifies the

entry-point function of a built-in device driver. A device driver

typically consists of multiple functions which span multiple source

files. Thus, we need another mechanism to identify other func-

tions belonging to the built-in driver to effectively delete it if it

is inoperative. Our intuition to overcome this limitation is that, if

we carefully analyze the dependencies between the entry-point

function and other functions, we may be able to detect the driver’s

other functions. We will explain it in §4.2.

4.2 Dependency Analysis (T2)

Once Hacksaw identifies device drivers, it first constructs a di-

rected dependency graph based on the identified drivers and then

gradually populates the graph with other kernel functions and

LKMs related to the identified drivers. Specifically, it conducts de-

pendency analysis to detect other non-driver functions and LKMs

that depend on the identified drivers or that the identified drivers

depends on, and includes them to the graph. Hacksaw uses three

dependency analysis approaches: call-graph analysis, driver-model

analysis, and compilation-unit analysis. Hacksaw repeatedly runs

these analyses until it no longer finds any new function and de-

pendency. Hacksaw attempts to delete functions and LKMs only if

they are included in the dependency graph at the end.

Dependency graph. Hacksaw constructs a hardware-centric de-

pendency graph which is a directed graph between driver-related

kernel functions. Each vertex represents a function or a set of func-

tions (e.g., LKM, object file), and each edge represents directional

dependencies between them. If vertex 𝑣𝑎 depends on vertex 𝑣𝑏 (e.g.,

𝑎 calls 𝑏, 𝑎 imports a symbol that 𝑏 exports), the graph has a di-

rected edge from 𝑣𝑏 to 𝑣𝑎 (𝑣𝑎 ← 𝑣𝑏). A vertex has two attributes

representing 1) whether it is from a driver and 2) whether it is

inoperative. An edge has an attribute to specify whether it is strong

(unconditional) or weak (conditional). For example, symbol import

is always strong whereas a function call can be either strong or

weak.

Call-graph analysis. Hacksaw figures out call- and symbol-based

dependencies between functions in LKMs or the kernel image. The

symbol dependencies between LKMs are already identified by the

kernel build system (i.e., modules.dep). Thus, we focus on identify-

ing the dependencies 1) between built-in kernel functions and 2)

between functions in LKMs and built-in kernel functions.

Our call graph analysis is largely standard [74] except for the

following polices to avoid false removals of indirectly or condi-

tionally callable functions. First, it does not analyze (i.e., does not

delete) functions whose addresses can be taken (potentially for

indirect calls). Second, it only considers direct function invocations

when it checks the dependency—i.e., it ignores any indirect calls

via function pointers. Third, it distinguishes conditional calls from

unconditional calls and maintains it in each edge attribute.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Zhenghao Hu, Sangho Lee, and Marcus Peinado

We start our call-graph analysis from the entry-point functions of

the identified built-in drivers and all functions in LKMdevice drivers

while ignoring calls between LKMs (which are already identified).

Whenever we find new functions during the analysis, we run the

analysis against the new functions recursively until we no longer

observe any new function and dependency.

Although our call-graph analysis is accurate and general, it relies

on direct function calls so that it has no way to observe indirect

dependencies potentially through indirect function calls and shared

data. Thus, we consider two other approaches which can accurately

handle specific indirect dependencies.

Driver-model analysis. The driver-model analysis is based on the

semantics we explained in §2—device drivers are managed by their

bus drivers according to their hardware buses and their class drivers

according to their device classes. Therefore, we aim to identify bus

and class drivers in order to detect other kernel functions which

are related to device drivers through the bus and/or class drivers.

The driver-model analysis begins with identifying bus and class

drivers based on their three features. First, these drivers invoke

bus_register() and class_register() during initialization, re-

spectively. Thus, we check the call graphs of LKMs and built-in

kernel functions to confirm whether they (eventually) invoke these

functions. Second, they have functions to assign a driver or device

to a certain bus or device class by storing a specific bus-type or

device-class value to the corresponding field of a driver or device

structure. Third, they define custom device/driver registration func-

tions that we explained in §4.1. Once we identify the bus and class

drivers, we include them into the dependency graph and run the

call-graph analysis against them to extend the graph.

Compilation-unit analysis. The compilation-unit analysis iden-

tifies the compilation dependencies between drivers and kernel

functions—i.e., whether they must be built together and are poten-

tially linked into the same archive or object file. It is effective in

discovering non-entry-point functions of built-in device drivers.

Specifically, we identify minimal build configuration options that

individual drivers or kernel functions depend on and check whether

their build options cover those of other kernel functions or drivers.

To this end, we first analyze the kernel build system (i.e., Kbuild

Makefile) to identify minimal build configuration options to se-

lectively compile the source files containing our target functions

(e.g., entry-point function and device/driver registration function)

and represent them as Boolean expressions (𝑒𝑡). Second, we iden-

tify a set of Boolean variable assignments which satisfy 𝑒𝑡 . Third,

we identify other source files that will be built according to the

assignment set (i.e., if a Boolean expression of their build config-

uration options is 𝑒𝑜 , 𝑒𝑡 implies 𝑒𝑜). For example, the kernel build

system builds ath3k.o if both CONFIG_BT and CONFIG_BT_ATH3K are

enabled (Figure 4). This build option further builds bluetooth.o

which only requires CONFIG_BT. We need a Boolean Satisfiability

(SAT) solver [19] to compare the satisfiability of their build con-

figuration options. Finally, we include the functions contained in

the same compilation-unit into the dependency graph if at lease

one of them is already in the graph and run the call-graph analysis

against them to extend the graph.

1 # drivers/Makefile
2 obj-$(CONFIG_BT) += bluetooth/
3 # drivers/bluetooth/Makefile
4 obj-$(CONFIG_BT_ATH3K) += ath3k.o
5 # And(Bool(CONFIG_BT), Bool(CONFIG_BT_ATH3K))
6

7 # net/Makefile
8 obj-$(CONFIG_BT) += bluetooth/
9 # net/bluetooth/Makefile
10 obj-$(CONFIG_BT) += bluetooth.o
11 # Bool(CONFIG_BT))
12

13 # And(Bool(CONFIG_BT), Bool(CONFIG_BT_ATH3K)) -> Bool(CONFIG_BT))

Figure 4: Part of Makefiles to build ath3k.o and bluetooth.o.

4.3 Hardware Probing (T3)

Device inventory. Hacksaw identifies a list of hardware devices

attached to the target machine. This device inventory is necessary to

distinguish inoperative device drivers from operative device drivers

in the dependency graph (§4.2). To identify the set of devices on the

target machine, Hacksaw first boots a minimal operating system—

which can be based on the target kernel image it has to debloat

but with initramfs—on the target machine. Then, it runs a probing

script to collect all hardware-related information that the operating

system kernel exposes (e.g., through sysfs) and, finally, compiles

the device inventory. It is worth noting that this device inventory

creation is the only procedure to be performed online.

Marking. Once the device inventory is prepared, Hacksaw tra-

verses the dependency graph to locate the vertices (i.e., functions

or modules) belonging to device drivers and mark them as “inop-

erative” only if their hardware IDs do not match any hardware

device in the device inventory. Hacksaw does not falsely mark any

vertices that do not have hardware IDs (i.e., they belong to software

components).

4.4 Function Removal (T4)

Once the dependency graph (§4.2) is marked by the device inven-

tory (§4.3), Hacksaw identifies all inoperative device drivers and

kernel functions by propagating marks throughout the graph, and

then finally deletes the corresponding LKM files or patches out the

corresponding functions in the kernel image or LKMs.

Mark propagation. Hacksaw propagates “inoperative” marks

throughout the dependency graph based on three rules. All these

rules are repeatedly applied until no more vertex is markable. In

addition, Hacksaw never marks nodes whose hardware IDs match

any entry of the device inventory.

Rule 1. Descendant marking: If a vertex is a strong descendant of
an already marked vertex (e.g., if a function unconditionally calls a

marked function), Hacksaw marks the vertex.

Rule 2. Ancestor marking: If all strong or weak descendants of

a vertex are marked (e.g., if all functions which conditionally or

unconditionally call a function are marked), Hacksaw marks the

vertex.

Rule 3. Bus/class ancestor marking: If a vertex is for a bus or class
driver and all its strong or weak descendant vertices for device

drivers (i.e., which can call its custom registration functions) are

marked, Hacksaw marks the vertex. This rule is a relaxed variant

of Rule 2 which is based on bus/class contexts: if no hardware device

Hacksaw: Hardware-Centric Kernel Debloating via Device Inventory and Dependency Analysis CCS ’23, November 26–30, 2023, Copenhagen, Denmark

is registered with a certain bus or class, the bus or class does not

properly operate and is removable.

Module/function removal. Once “inoperative” marks are fully

propagated, Hacksaw deletes the corresponding LKMs from the

target system image (e.g., its root file system) and the corresponding

functions embedded in the kernel image or LKMs. We consider two

approaches to delete embedded functions: use a compiler pass to

delete the functions during compilation or use a binary rewriting

tool to patch out them. The former reduces the kernel memory

footprint but requires kernel re-compilation. The latter requires no

kernel re-compilation but wastes the kernel memory. Since reducing

the memory footprint is not our main goal, we choose the latter for

our implementation (§5), but the former also works.

5 IMPLEMENTATION

In this section, we explain a prototype implementation ofHacksaw

for Linux-based systems. Our implementation for identifying device

drivers and building the dependency graph consists of 1,000 lines

of Python code (3.10) and 1,400 lines of C++ code for LLVM-based

static analysis (LLVM 15.0 [48]). We use Whole Program LLVM

(WLLVM [70]) to build the Linux kernel with our passes. Also, our

debloating code consists of 1,420 lines of Shell Script and 150 lines

of Python code. We use the Linux kernel version 5.19 as our baseline

kernel—function names and numbers mentioned in this section are

based on this version. Also, we focus on x86, so our results do not

cover device drivers for other architectures like Arm and MIPS.

5.1 Device Driver Lookup

Separate drivers. As explained in §4.1, all LKMs which are device

drivers contain modalias in their metadata section. Thus, we com-

pile our Linux kernel (version 5.19) with the allmodconfig build

option—which compiles drivers and modules as LKMs if possible—

and run modinfo against all LKMs (i.e., *.ko) to collect their hard-

ware IDs. In total, we observe 5,878 LKM device drivers (for x86).

Built-in drivers. To deal with built-in device drivers, we first

figure out entry-point or initialization functions in the kernel. A

device driver either defines its entry-point function or uses a pre-

defined macro to automatically generate one. A device driver can

name its own entry-point function arbitrarily (e.g., mlx5_ib_init(),

usb_init(), ib_core_init()) and use a kernel-providedmacro (e.g.,

module_init(), subsys_initcall(), fs_initcall()) to expose its

entry-point function with deterministic mangling rules with certain

priority of loading (Figure 1a, Figure 2). For example, Linux kernel

version 5.12+ mangles every entry-point function in the format of

__initcall__kmod_<name>__<cnt>_<line>_<entryfn>_<lvl> with

macros, where name is a module name, cnt is a global macro counter,

line is a line number in the source code, entryfn is an entry-point

function name, and lvl is a pre-defined priority level. If a driver uses

a pre-definedmacro (e.g., module_pci_driver(), module_usb_driver())

to generate an entry-point function (Figure 1b), the macro names

the entry-point function with a symbol which is a concatenation

of a driver struct name and _init. We leverage these two naming

patterns to identify entry-point functions in the kernel image. In

total, we find 6,358 entry-point functions 1,174 of which belong to

built-in-only drivers or modules.

Next, we figure out custom device and driver registration func-

tions. We build call graphs starting from every global function and

checkwhether their vertices contain device_register(), device_add(),

or driver_register(). If they do, we treat the global function as a

custom registration function. In total, we find 186 custom device

registration functions and 74 custom driver registration functions.

Finally, we conduct backward slicing against the device/driver

structure arguments of the custom registration functions whose

field has an ID table. This backward slicing ends up with global ID

table structure variables and we extract hardware IDs from them.

We cross-check the type of the ID table with the device ID structs

defined in the Linux kernel source (e.g., file2alias.c). Hacksaw

currently supports 12 device ID structures including pci_device_id,

usb_device_id, x86_cpu_id, and hv_vmbus_device_id, which cov-

ers 98.8% of all device drivers according to modules.alias. Note that

there is no technical challenge in handling all device ID structures—

partial support is only an engineering decision.

5.2 Dependency Analysis

Dependency graph. In our prototype implementation, we sepa-

rate dependency graphs (§4.2) for LKMs and kernel functions to ad-

dress their different levels of dependency in a simplified manner. In

the LKM-level dependency graph, every vertex represents an LKM

and every directed edge represents the symbol import/export—an

LKM importing a symbol is a child and an LKM exporting a symbol

is a parent. To this end, we check each LKM’s symbol table (using

nm) and modules.dep. In the function-level dependency graph, every

vertex represents a kernel function and every directed edge repre-

sents a function call—a caller is a child and a callee is a parent. We

additionally maintain whether each function resides in the kernel

image or an LKM to ease the later function removal (§5.4).

Call-graph analysis. We build function call graphs on top of

LLVM IR over the whole Linux kernel and LKMs. For every function,

we compute two lists each including its callers and callees. We use

modules.dep to identify symbol-level dependencies between LKMs.

Driver-model analysis. We identify bus and class drivers to

perform the driver-model analysis. As explained in §4.2, the bus

and class drivers 1) invoke bus_register() and class_register(),

2) assign bus-type and device-class variables to driver and device

structures, and 3) define custom driver and device registration

functions, respectively. The first one is straightforward—we conduct

a call-graph analysis to identify which LKMs and built-in kernel

functions invoke them. Also, the third one is already done because

we identify a list of custom driver and device registration functions

for the driver lookup (§5.1). To deal with 2), we write an LLVM

pass and a source-code text parser. In particular, we first locate

all bus type (struct bus_type) and device class (struct class)

definitions and collect their variable names (e.g., Line 2 in Figure 1a

and Figure 2a). Then, we look for functions that assign the collected

variable names to the corresponding field of driver and device

structures (e.g., Line 11 in Figure 1a and Line 12 in Figure 2a).

Finally, we seek which LKMs and built-in object files define these

functions. In total, we find 90 bus types and 72 device classes.

Compilation-unit analysis. To conduct the compilation-unit

analysis, we 1) identify minimal build configuration options for

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Zhenghao Hu, Sangho Lee, and Marcus Peinado

compiling each kernel source file, 2) figure out configuration vari-

able (Boolean) assignments to build a certain source file (e.g., which

defines entry-point or custom registration functions), and 3) seek

other source files that will be built as well due to the configuration

variable assignments. First, we use kmax [28] which returns mini-

mal build configuration options for building each kernel source file

as a Boolean expression—i.e., a sequence of configuration options

along with And, Or, and Not operators. Then, to figure out a set of

variable assignments which satisfies the Boolean expression for

a source file, we successively assign a True or False value to its

variables and check its satisfiability using Z3 [19] for all possible

assignment combinations. Instead of testing all possible combina-

tions (which is computationally expensive), we can extract actual

assignments from the build configuration option of a target system

image. Lastly, we apply the set of satisfying variable assignments

against the Boolean expression for building each source file with

Z3 to confirm whether the assignment is satisfied. If a variable

assignment satisfies the Boolean expressions of multiple source

files, these files belong to the same compilation unit.

5.3 Hardware Probing

Device inventory. Our prototype implementation relies on a Linux

installation to probe hardware information. The Linux installation

running in our target machine enumerates all hardware compo-

nents and exposes them via sysfs (i.e., /sys/devices). Then, we run

a script to dump all modalias files [71] inside sysfs which contains

all hardware IDs of the platform. We use a standard installation of

Ubuntu Server 22.04 which is slightly modified to automatically

runs our script for this purpose.

Marking. We compare the hardware IDs we extracted from the

device drivers against the device inventory. The hardware ID from

a device driver often contains wildcard characters (e.g., * matches

any character of any length) to be compatible with minor revisions

in the hardware devices. Thus, we convert the wildcard expressions

to a regular expression and match it against the device inventory.

5.4 Function Removal

Mark propagation. We associate a device’s hardware ID with 1)

its separate device driver (i.e., LKM) or 2) its entry-point function

or compilation unit if it is a built-in driver. We mark the device

driver or the compilation unit as “inoperative” when we confirm

that the target hardware device inventory does not have a match

with the hardware ID. We implement Rule 1, 2, and 3 in a Python

script as described in §4.4 to traverse the dependency graph and

propagate the “inoperative” mark.

Module removal. To remove LKMs of inoperative device drivers or

kernel components, we mount the target system image and then re-

move inoperative LKMs stored in /lib/modules/<kernel version>.

Also, we update modules.dep accordingly to avoid meaningless

module loading attempts by system services.

Initial RAM file system: In addition to removing the LKMs in the

root file system, we remove the LKMs contained in the initial RAM

file system (initramfs). Our first step is to unpack initramfs. The

standard format for initramfs is CPIO archive, but different Linux

distributions pack their initramfs differently—e.g., Ubuntu packs

three CPIO archives into a single initramfs file, including two

for AMD and Intel CPU microcode binaries followed with one

compressed CPIO archive with its minimal root file system. In

our implementation, we infer the initramfs layout by recursively

unpacking it with CPIO format and cutting off the part that success-

fully unpacked, until we have reached a compressed binary format

(e.g., zstd, gzip). After the unpacking procedure, we decompress

initramfs and remove the inoperative drivers and modules from it.

In the end, we repack initramfs by compressing the patched file

system and putting all CPIO archive parts back together.

Function removal. Once we identify inoperative functions in the

kernel image and LKMs, we remove them from the corresponding

binary files. We use Capstone [12] for this. We first locate where

the inoperative functions are. If an inoperative function resides in

the kernel image, we use the Linux kernel’s system-wide symbol ta-

ble (i.e., System.map) to identify its offset. If an inoperative function

resides in an LKM, we check its ELF header information to calculate

the function offset. After we locate the inoperative function, we

patch it based on linear disassembly according to its types. If it is

a built-in entry-point function, the kernel invokes it regardless of

whether the corresponding hardware device exists. However, the

kernel does not check its return value, so we simply replace the

function with a direct return. If it is not an entry-point function,

the kernel must not invoke it according to our dependency analysis.

Therefore, we replace its function body with the nop instruction.

In addition, we identify and skip the Ftrace stub—for dynamic

tracing—at the beginning of functions because patching them out

can result in system failures.

Unpacking and repacking the kernel: The Linux kernel image is

shipped in compressed format as bzImage consisting of the com-

pressed kernel binary and the bootstrap loader. Therefore, to patch

out the inoperative functions in the kernel image, we need to un-

pack bzImage first to extract the raw image and then repack it back

after the patching. We use the extract-vmlinux script contained

in the Linux source code to unpack bzImage. Repacking the kernel

is challenging because the patched kernel is not recompressed back

to exactly the same size and layout as it was before the patching—it

is no longer compatible with the bootstrap loader. To solve this

problem, we pre-build another instance of the Linux kernel with

the same kernel version and configuration to collect setup binaries,

offset information (i.e., zoffset.h), and build scripts. We use them

to correctly repack the patched kernel image.

Decompressing and recompressing LKM: Some Linux distributions

(e.g., CentOS, openSUSE) compress their LKMs to save disk space.

Thus, during the patching of LKMs, we decompress and recompress

them to comply with the system settings.

6 EVALUATION

In this section, we evaluate Hacksaw by answering the following

questions:

• RQ1. How many inoperative drivers, modules, and functions

does Hacksaw delete? (§6.2)

• RQ2. How many security vulnerabilities does Hacksaw poten-

tially mitigate? (§6.3)

• RQ3. Is the result of Hacksaw valid? (§6.4)

• RQ4. Does Hacksaw ensure compatibility? (§6.5)

Hacksaw: Hardware-Centric Kernel Debloating via Device Inventory and Dependency Analysis CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Table 1: Hardware platforms and their components.

Type AWS AZ1 AZ2A AZ2I GCP KVM HV

t2.micro D2s-v3 D2as-v5 D2s-v5 e2-micro Default

ACPI 18 20 9 9 13 17 20

CPU 1 1 1 1 1 1 1

HID 0 1 1 1 0 0 1

PCI 6 6 0 1 7 6 5

SCSI 0 1 1 1 1 2 2

SerIO 2 2 1 1 2 2 2

Virtio 0 0 0 0 4 0 0

VMBus 0 13 10 13 0 0 15

XenBus 2 0 0 0 0 0 0

* AWS: AWS VM (Intel) * AZ1: Azure Gen1 VM (Intel)

* AZ2A: Azure Gen2 VM (AMD) * AZ2I: Azure Gen2 VM (Intel)

* GCP: GCP VM (Intel) * KVM: QEMU-KVM (Intel)

* HV: Windows Hyper-V Gen1 VM (Intel)

6.1 Environment

Hardware platform. As target hardware platforms, we choose vir-

tual machine instances of the three public cloud services (Amazon

AWS EC2, Microsoft Azure, and Google Cloud Platform (GCP)) and

two desktop virtualization platforms: QEMU-KVM and Windows

Hyper-V. All these have predictable, different hardware configura-

tions provided by different virtualization technologies. Specifically,

the AWS EC2 instance we choose uses Xen, so its guest machines

are expected to support XenBus devices. Both Azure and Windows

Hyper-V use Hyper-V, so its guest machines are expected to sup-

port Virtual Machine Bus (VMBus). GCP uses KVM, so its guest

machines are expected to support Virtio devices. Despite all the

differences among these virtualization platforms, they commonly

attach popular types of devices to their guest machines includ-

ing ACPI, CPU, PCI, SCSI, and serial I/O devices. This makes our

selection of cloud platforms generic enough for our evaluation.

Overall, we end up with seven different hardware device invento-

ries in total. This includes three different hardware configurations

for Microsoft Azure to evaluate configuration differences for the

same cloud provider: Generation 1 (BIOS) VM and Generation 2

(UEFI) VM with AMD or Intel CPU (Table 1).

System images. We prepare various system images based on pop-

ular Linux distributions including CentOS, Debian, Fedora, open-

SUSE, and Ubuntu. We create five bare-metal system images using

their Optical Disc (ISO) images. Also, we download or dump their

cloud image versions (seven in total) specialized for AWS, Azure,

and GCP (Table 2). Particularly for Ubuntu, we prepare the cloud

images for the three cloud services.

Evaluation machine. We use a desktop computer featuring an

Intel Core i9-12900K CPU and 64GiB of RAM for all our evaluations.

6.2 Module and Function Removal (RQ1)

We evaluate how many inoperative device drivers and kernel mod-

ules as well as kernel functions Hacksaw can remove from our

system images when we debloat them for our target platforms. Be-

fore explaining the removal results, we first check how many LKMs

and kernel functions (functions embedded in the kernel images)

exist in our system images (Table 2). As expected, the cloud images

Table 2: System images with their modules and built-in ker-

nel functions.

Image Version Module Kernel function

Distro Kernel Total Driver Total Entry DrvEntry

Bare-metal

Debian 11 5.10 3,899 1,454 43,712 597 48

Fedora Server 36 5.17 3,893 1,430 61,107 797 73

Fedora Workstation 36 5.17 4,015 1,451 61,107 797 73

Ubuntu Server 22.04 5.15 6,040 2,296 65,489 810 111

openSUSE Leap 15.4 5.14 4,604 1,681 48,130 675 47

Cloud image

CentOS (AWS) 9 5.14 2,152 664 53,638 714 53

Debian (Generic) 11 5.10 937 96 40,984 505 19

Fedora Cloud Base (GCP) 36 5.17 1,859 620 61,107 797 73

Ubuntu Server (AWS) 22.04 5.15 1,000 144 65,710 809 111

Ubuntu Server (Azure) 22.04 5.15 884 82 63,027 726 76

Ubuntu Server (GCP) 22.04 5.15 998 145 66,375 822 112

openSUSE Leap (GCP) 15.4 5.14 2,227 635 48,270 676 47

* Entry: Entry-point functions * DrvEntry: Entry-point functions with device IDs

have fewer modules (and device drivers) in total than the bare-

metal images because the cloud images are already specialized for

their target platforms [45]. Interestingly, the differences between

the bare-metal and cloud images in terms of kernel functions are

marginal. This is potentially because built-in functions are critical

to system execution such that cloud image maintainers do not try

to specialize them. Note that, in Table 2, we determine the number

of device drivers by comparing all LKMs and built-in entry-point

functions against our device driver lookup results. Since our pro-

totype does not cover all device IDs (it covers 98.8% of all device

IDs §5.1,) the number of device drivers enumerated here might be

slightly smaller than the actual number, but any such difference

would be negligible.

Bare-metal and cloud image reduction. Figure 5 shows the

number of device drivers, kernel modules, and kernel functions

that Hacksaw removes from or maintains in our system images

based on the device inventory of our target platforms. In partic-

ular, we break down the number in terms of why we delete or

preserve them: 1) inoperative device drivers (driver) or their entry-

point functions if they are built-in drivers (drvEntry), 2) modules

or functions depending on the inoperative drivers (dependent),

3) modules whose functions are partially removed (patched), and

4) the remaining drivers, modules, or functions (remaining). Both

driver- and dependent-based removals significantly affect the over-

all reduction ratio. Hacksaw removes 61.4%–69.7% of LKMs from

the bare-metal system images and 11.8%–55.5% of LKMs from the

cloud images. Also, it removes 30.4%–36.4% of functions from the

kernel images in the bare-metal images and 25.6%–35.7% of func-

tions from the kernel images in the cloud images. Therefore, we

conclude that Hacksaw effectively reduces the attack surface of

both bare-metal and cloud images even though the cloud images

are already specialized by their maintainers.

Distinct reduction. We check whether and how different device

inventories affect Hacksaw’s reduction of the same system im-

age. We choose three debloated images for AWS, AZ2I, and GCP

which are based on the bare-metal Ubuntu Server image, and then

compare the removed kernel modules and functions between them.

Table 3 shows that, even though they are based on the same image,

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Zhenghao Hu, Sangho Lee, and Marcus Peinado

Debian Fedora Server Fedora Workstation Ubuntu Server openSUSE Leap
0

2000

4000

6000

of

 d
riv

er
s/

m
od

ul
es

37.0% 36.6% 36.0%
37.8%

36.3%

24.1% 24.4% 24.2%

28.2%

28.1%3.2% 3.7% 3.7%

3.7%

3.5%

36.9% 36.4% 35.8%
37.7%

36.1%

20.7% 24.2% 24.0%

26.6%

26.9%3.9% 3.8% 3.8%

3.9%

3.9%

37.0% 36.4% 35.9%
37.7%

36.2%

20.7% 24.1% 24.0%

26.6%

26.9%3.9% 3.8% 3.8%

3.9%

3.9%

37.0% 36.5% 35.9%
37.8%

36.2%

20.7% 24.2% 24.0%

26.6%

26.9%3.9% 3.9% 3.8%

3.9%

3.9%

37.0% 36.5% 35.9%
37.9%

36.3%

23.0% 24.2% 24.0%

28.2%

27.1%3.5% 3.7% 3.7%

3.6%

3.8%

37.0% 36.6% 35.9%
37.8%

36.2%

23.7% 24.2% 23.9%

27.6%

27.8%3.5% 3.9% 3.9%

3.9%

3.8%

36.8% 36.4% 35.8%
37.7%

36.1%

20.6% 24.0% 23.9%

26.5%

26.8%4.0% 3.9% 3.9%

4.0%

4.0%

(a) Bare-metal driver removal

remaining
patched
dependent
driver

Debian Fedora Server Fedora Workstation Ubuntu Server openSUSE Leap
0

20000

40000

60000

of

 fu
nc

tio
ns

0.1% 0.1% 0.1% 0.1% 0.1%

33.8%
32.4% 32.4% 31.0% 36.3%

0.1% 0.1% 0.1% 0.2% 0.1%

32.7%
31.4% 31.5% 30.3% 35.2%

0.1% 0.1% 0.1% 0.2% 0.1%

32.7%
31.5% 31.7% 30.4% 35.3%

0.1% 0.1% 0.1% 0.2% 0.1%

33.2%
31.9% 32.1% 30.7% 35.8%

0.1% 0.1% 0.1% 0.2% 0.1%

33.5%
32.0% 32.3% 30.9% 35.9%

0.1% 0.1% 0.1% 0.2% 0.1%

33.8%
32.1% 32.2% 30.8% 36.2%

0.1% 0.1% 0.1% 0.1% 0.1%

33.1%
31.7% 31.8% 30.5% 35.6%

(b) Bare-metal function removal

remaining
dependent
drvEntry

CentOS (AWS) Debian (Generic) Fedora Cloud Base (GCP) Ubuntu Server (AWS) Ubuntu Server (Azure) Ubuntu Server (GCP) openSUSE Leap (GCE)
0

500

1000

1500

2000

of

 d
riv

er
s/

m
od

ul
es

30.6%

9.7%

33.1%

14.0% 9.0% 14.2%

28.1%

24.9%

6.3%

9.4%

6.0%
5.0%

5.2%

24.4%

5.1%

1.8%

4.0%

5.0%
4.6%

4.8%

4.4%

30.1%

9.0%

32.7%

13.4% 8.6% 13.6%

27.8%

24.5%

3.3%

9.3%

5.5%
4.8%

4.7%

22.1%

5.4%

2.3%

4.0%

5.0%
4.8%

4.8%

5.3%

30.3%

9.3%

32.8%

13.4% 8.6% 13.5%

28.0%

24.5%

3.2%

9.2%

5.5%
4.8%

4.7%

22.1%

5.3%

2.3%

4.0%

5.0%
4.8%

4.8%

5.2%

30.4%

9.4%

32.8%

13.6% 8.7% 13.7%

28.0%

24.5%

3.3%

9.2%

5.5%
4.8%

4.7%

22.2%

5.4%

2.5%

4.0%

5.3%
4.8%

5.1%

5.3%

30.5%

9.3%

33.0%

14.0% 8.8% 14.2%

28.1%

24.9%

4.3%

9.0%

6.0%
5.0%

5.2%

22.5%

5.1%

2.2%

3.9%

4.9%
4.5%

4.7%

5.0%

30.5%

9.6%

33.0%

13.9% 8.8% 14.1%

28.1%

24.7%

6.5%

9.1%

5.7%
4.6%

4.9%

24.0%

5.2%

1.7%

4.2%

5.3%
5.0%

5.1%

4.8%

30.1%

8.9%

32.7%

13.5% 8.7% 13.7%

27.7%

24.3%

3.0%

9.0%

5.5%
4.8%

4.7%

21.9%

5.5%

2.6%

4.2%

5.3%
4.8%

5.1%

5.4%

(c) Cloud-image driver removal

remaining
patched
dependent
driver

CentOS (AWS) Debian (Generic) Fedora Cloud Base (GCP) Ubuntu Server (AWS) Ubuntu Server (Azure) Ubuntu Server (GCP) openSUSE Leap (GCE)
0

20000

40000

60000

of

 fu
nc

tio
ns

0.08% 0.04% 0.10% 0.15% 0.10% 0.15% 0.08%

33.0%
27.8%

29.4% 28.2% 26.7% 28.0% 35.6%

0.08% 0.03% 0.10% 0.15% 0.10% 0.15% 0.08%

32.0%
26.8%

28.8% 27.5% 25.5% 27.2% 34.5%

0.08% 0.04% 0.10% 0.16% 0.10% 0.16% 0.08%

32.0%
26.8%

28.9% 27.6% 25.6% 27.2% 34.5%

0.08% 0.04% 0.10% 0.16% 0.10% 0.16% 0.08%

32.5%
27.3%

28.9% 27.9% 26.0% 27.6% 35.0%

0.08% 0.04% 0.10% 0.15% 0.10% 0.15% 0.08%

32.6%
27.0%

29.0% 27.9% 26.3% 27.6% 35.2%

0.09% 0.04% 0.10% 0.15% 0.10% 0.15% 0.08%

32.8%
28.6%

29.1% 28.0% 26.4% 27.7% 35.5%

0.08% 0.04% 0.10% 0.15% 0.09% 0.15% 0.08%

32.4%
27.3%

28.7% 27.7% 25.8% 27.4% 34.9%

(d) Cloud-image function removal

remaining
dependent
drvEntry

Figure 5: The number of drivers/modules that Hacksaw removes from or maintains in each combination of the system images

and the target platforms (left to right: AWS, AZ1, AZ2A, AZ2I, GCP, KVM, and HV).

Table 3: Comparison of removed modules and functions for

Ubuntu Server with different profiles (AWS, AZ2I, GCP).

Difference Modules Kernel functions

AWS − GCP 3 94

AWS − AZ2I 7 140

GCP − AWS 6 240

GCP − AZ2I 9 122

AZ2I − AWS 16 420

AZ2I − GCP 15 256

the removed modules and functions are distinct. For example, the

debloated AWS image has no Virtio and VMBus drivers whereas the

debloated GCP image has no VMBus and XenBus drivers. Also, the

debloated AWS image maintains a few extra ACPI and PCI devices

like pata_acpi whereas both AZ2I and GCP images do not.

initramfs reduction. We also check whether Hacksaw reduces

the attack surface of initramfs by removing inoperative LKMs it

contains. Table 4 shows that Hacksaw removes 38.8%–61.1% of

LKMs contained in the bare-metal system images and 23.8%–46.4%

of LKMs contained in the cloud images. Thus, Hacksaw effectively

reduces the attack surface of initramfs.

6.3 Vulnerability Mitigation (RQ2)

We evaluate how effective Hacksaw is in terms of potential vul-

nerability mitigation. To this end, we analyze CVEs which are

historically related to Linux kernel drivers or modules and check

how many driver/module CVEs Hacksaw can remove based on

hardware absence. We first collect all Linux kernel CVEs since 2015

Hacksaw: Hardware-Centric Kernel Debloating via Device Inventory and Dependency Analysis CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Table 4: Reduction of LKMs in initramfs.

Image Removed Total %

Bare-metal

Debian 412 674 61.1

Fedora Server 118 303 38.9

Fedora Workstation 118 303 38.9

Ubuntu Server 792 1,533 51.7

openSUSE Leap 157 405 38.8

Cloud image

CentOS (AWS) 289 649 44.5

Debian (Generic) 37 124 29.8

Fedora Cloud Base (GCP) 216 571 37.8

Ubuntu Server (AWS) 91 335 27.2

Ubuntu Server (Azure) 70 294 23.8

Ubuntu Server (GCP) 87 330 26.4

openSUSE Leap (GCE) 389 839 46.4

Table 5: Decomposition of CVE mitigations on CVSS scores.

Image Removed/Total

Low Medium High Critical

Bare-metal

Debian 10/24 230/459 191/368 12/25

Fedora Server 8/22 214/349 187/321 12/21

Fedora Workstation 9/25 220/384 189/338 12/24

Ubuntu Server 10/26 257/438 222/387 14/27

openSUSE Leap 11/25 264/438 210/375 13/25

Cloud image

CentOS (AWS) 5/16 164/289 140/252 7/15

Debian (Generic) 2/12 42/185 42/171 1/10

Fedora Cloud Base (GCP) 1/11 66/186 48/169 4/11

Ubuntu Server (AWS) 2/17 60/216 47/189 3/14

Ubuntu Server (Azure) 1/16 35/193 29/179 1/12

Ubuntu Server (GCP) 0/14 56/210 43/183 3/14

openSUSE Leap (GCE) 7/18 208/370 164/309 10/20

which are bundled with patch commits [49]. Then, we match the

patch commits with the kernel drivers and modules based on their

source code file paths in order to associate the CVEs with the dri-

vers or modules. In total, we find 1,644 CVEs related to drivers or

modules.

With the total set of driver/module CVEs, we check how many

driver/module CVEs our system images individually contain and

how many of them Hacksaw can potentially mitigate by remov-

ing their inoperative drivers and modules. Figure 6 shows the re-

sults. Overall, Hacksaw is able to mitigate 10.7%–57.4% of the

driver/module CVEs contained in the system images. We further

check the severity of driver/module CVEs mitigated by Hacksaw

based on their Common Vulnerability Scoring System (CVSS) [22]

scores. As shown in Table 5, Hacksaw mitigates CVEs with high

or critical CVSS scores as well. Thus, we conclude that Hacksaw

is effective at mitigating kernel security vulnerabilities. We fur-

ther discuss whether these driver/module CVEs can be triggered

without corresponding hardware components in §7.

6.4 Validity (RQ3)

We evaluate whether the outcome of Hacksaw is valid. That is,

we aim to check whether Hacksaw might falsely remove device

drivers which are needed. This evaluation requires ground truth for

Table 6: Comparison of the number of removed drivers by

Hacksaw and the cloud images.

Image Platform Removed Total

Hacksaw Cloud ∥𝐻 − 𝐶 ∥ ∥𝐶 − 𝐻 ∥

Debian KVM 1,448 1,358 94 3 1,454

Fedora Server GCP 1,424 810 614 0 1,430

Fedora Workstation GCP 1,445 831 614 0 1,451

Ubuntu Server AWS 2,289 2,149 142 2 2,296

Ubuntu Server AZ2I 2,287 2,204 84 0 2,296

Ubuntu Server GCP 2,290 2,147 144 1 2,296

openSUSE Leap GCP 1,674 1,045 629 0 1,681

comparison, but, unfortunately, there is no complete ground truth

we can rely on. A potential candidate we considered is LKDDb [14],

but we observed that it has many false positives because it relies

on text matching and heuristics. Instead, we use the cloud images

which are manually trimmed by experts to be launched in certain

cloud or virtualization environments [45]. We emphasize that the

cloud images are not fully minimized for their target platforms

(as shown in §6.2). They typically contain some redundant drivers,

which allow them to be migrated between different public cloud

services [32, 33, 68]. Thus, our validity evaluation still requires

best-effort manual verification.

We debloat our five bare-metal images according to the cloud

images we collected. For example, since we have the Debian cloud

image for KVM (generic), we debloat the bare-metal Debian image

for KVM. Also, since we have the Ubuntu cloud images for AWS,

Azure, and GCP, we debloat the bare-metal Ubuntu Server image for

each of them. Then, we compare the debloated bare-metal images

against the corresponding cloud images. Table 6 shows the results.

In total, the system images debloated byHacksaw have 3.6%–42.9%

fewer device drivers than the cloud images. We compare the hard-

ware IDs of the drivers deleted by Hacksaw against the hardware

device inventory (based on sysfs) of each platform. We confirm

that there is no false removal. In particular, we manually verify

the device/bus type and their corresponding hardware IDs for each

driver we removed. For all the extra drivers Hacksaw removes, we

verify and exclude bus types that do not exist in our target plat-

forms including Plug-n-Play, USB, Type-C, and I3C. We also check

the device types which are exclusive to specific cloud platforms.

For example, Azure uses Hyper-V, so it does not support XenBus

and Virtio drivers. For the remaining device drivers (ACPI, CPU,

I2C, MDIO, PCI, and platform devices), we check the hardware IDs

they embed and confirm that these devices do not exist in the target

cloud platforms.

In addition, we observe five drivers in total which are deleted by

some cloud images but notHacksaw: e1000, fjes, floppy, parport_pc,

and sb_edac. Since their corresponding hardware devices exist in

the target platforms, we believe the cloud image maintainers have

deleted them for other reasons (e.g., they might be barely used.)

6.5 Compatibility (RQ4)

Lastly, we evaluate whether Hacksaw is compatible with popular

applications and maintains the system stability. First, we choose

seven real-world applications—7zip, Memcached, NGINX, Octave,

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Zhenghao Hu, Sangho Lee, and Marcus Peinado

Debian Fedora Server Fedora Workstation Ubuntu Server openSUSE Leap
0

200

400

600

of

 d
riv

er
/m

od
ul

e
C

V
Es

19.4% 21.7% 20.5% 19.5% 20.9%

27.0% 32.0% 31.1%
33.5% 31.1%

9.2%
9.9% 9.5%

7.6%
7.9%

18.8% 20.9% 19.7% 19.9% 20.2%

25.1% 32.1% 31.1%
32.0% 30.3%

11.5% 10.6% 10.2%

9.2%
9.4%

19.0% 21.2% 19.9% 20.1% 20.4%

25.0% 32.0% 31.0%
31.9% 30.2%

11.5% 10.6% 10.1%

9.2%
9.3%

19.6% 21.9% 20.6% 20.7% 21.0%

25.0% 32.0% 31.0%
31.9% 30.2%

10.9% 9.9% 9.5%

8.6%
8.7%

19.5% 22.0% 20.7% 20.7% 21.0%

26.2% 31.6% 30.7%

33.0%
30.2%

9.8%
10.0% 9.5%

7.5%
8.7%

19.4% 22.1% 20.7% 20.7% 20.9%

27.0% 31.8% 30.9%
32.9%

31.1%

9.2%
9.9% 9.5%

7.5%
7.9%

19.2% 21.6% 20.3% 20.4% 20.6%

25.1% 32.1% 31.1%
32.0% 30.3%

10.9% 9.9% 9.5%

8.6%
8.8%

(a) Bare-metal image

remaining
patched
dependent
driver

CentOS (AWS) Debian (Generic) Fedora Cloud Base (GCP) Ubuntu Server (AWS) Ubuntu Server (Azure) Ubuntu Server (GCP) openSUSE Leap (GCE)
0

100

200

300

400

500

of

 d
riv

er
/m

od
ul

e
C

V
Es

22.2%

3.0%
15.3% 11.5% 10.0% 12.4%

18.8%

32.8%

6.7%

6.1% 6.9% 6.9% 5.0%

29.6%

12.3%

5.0%

15.3% 12.7% 12.4% 12.6%

9.8%

21.2%

1.4%
15.0% 12.6% 8.5% 13.4%

17.9%

32.8%

4.5%

6.1% 4.6%
7.0% 2.6%

28.6%

13.2%

5.9%

15.3% 14.6% 13.6% 14.6%

11.6%

21.5%

1.7%
15.5% 12.8% 8.8% 13.7%

18.2%

32.7%

4.5%

6.1% 4.6%
6.9% 2.6%

28.5%

13.1%

5.9%

15.2% 14.5% 13.6% 14.5%

11.6%

22.4%

3.1%
15.5% 13.8% 10.0% 14.6%

18.9%

32.7%

4.5%

6.1% 4.5%
6.9% 2.6%

28.5%

12.3%

4.8%

15.2% 14.6%
12.4% 14.6%

10.9%

22.4%

3.1%
15.7% 13.8% 10.0% 14.6%

18.9%

32.7%

4.8%

5.1% 6.7%
6.9%

4.9%

28.5%

12.3%

5.1%

15.4% 12.4%
12.4%

12.3%

10.9%

22.4%

2.7%
15.8% 13.8% 10.0% 14.6%

18.8%

32.5%

7.0%

5.7% 6.5%
6.6%

4.6%

29.6%

12.3%

5.0%

15.5% 12.6%
12.7%

12.6%

9.8%

21.9%

2.4%
15.0% 13.5% 9.7% 14.4%

18.5%

32.9%

4.5%

6.1% 4.5%
7.0% 2.6%

28.7%

12.3%

4.8%

15.3% 14.6%
12.4% 14.7%

10.9%

(b) Cloud image

remaining
patched
dependent
driver

Figure 6: The number of driver/module CVEs that Hacksaw reduces from each combination of the system images and the

target platforms (left to right: AWS, AZ1, AZ2A, AZ2I, GCP, KVM, and HV).

Table 7: Phoronix Test Suite results (KVM).

Image 7zip Memcached NGINX Octave OpenSSL Redis SQLite

Bare-metal

Debian ✔ ✔ ✔ ✔ ✔ ✔ ✔

Fedora Server ✔ ✔ ✔ ✔ ✔ ✔ ✔

Fedora Workstation ✔ ✔ ✔ ✔ ✔ ✔ ✔

Ubuntu Server ✔ ✔ ✔ ✔ ✔ ✔ ✔

openSUSE Leap ✔ ✔ ✔ ✔ ✔ ✔ ✔

Cloud image

CentOS (AWS) ✔ ✔ ✔ ✔ ✔ ✔ ✔

Debian (Generic) ✔ ✔ ✔ ✔ ✔ ✔ ✔

Fedora Cloud Base (GCP) ✔ ✔ ✔ ✔ ✔ ✔ ✔

Ubuntu Server (Azure) ✔ ✔ ✔ ✔ ✔ ✔ ✔

Ubuntu Server (AWS) ✔ ✔ ✔ ✔ ✔ ✔ ✔

Ubuntu Server (GCP) ✔ ✔ ✔ ✔ ✔ ✔ ✔

openSUSE Leap (GCP) ✔ ✔ ✔ ✔ ✔ ✔ ✔

OpenSSL, Redis, and SQLite—from the Phoronix Test Suite [64]

which runwith the 12 original system images on KVMwithout prob-

lems. Then, we run them with the 12 images patched by Hacksaw

for KVM (Table 7). All test runs succeed with negligible perfor-

mance difference. Thus, we conclude that Hacksaw is compatible

with real-world applications.

Next, to check system stability, we run the LTP testsuite [50]

against all our system images before and after applying Hacksaw

to them. We run LTP against the original system images to filter out

tests that do not work even for them. Among the 2116 tests of LTP,

2037–2107 tests work with the original images. Then, we run those

successful tests against the patched images. We confirm that 2036–

2107 tests work with the patched images. We carefully investigate

all LTP failures (12 in total) and confirm that they fail because

their failure check routines are incompatible with Hacksaw. For

example, LTP testcases “cve-2017-1000380” and “cve-2018-7566”

check whether a sound device driver is loaded before performing

actual tests (i.e., attack the driver). If they fail to detect a loaded

sound driver, they simply terminate with a failure even though they

cannot attack the driver. Since Hacksaw passes all LTP testcases

except for suchmanually confirmed incompatible ones, we conclude

that Hacksaw does not introduce stability problems.

7 DISCUSSION

Vulnerabilities triggerable without hardware. Hacksaw mit-

igates security vulnerabilities potentially residing in kernel dri-

vers, modules, and functions by removing them if their correspond-

ing hardware components are not attached to a target machine.

However, if all these vulnerabilities cannot be triggered without

corresponding hardware devices, Hacksaw’s security advantages

might be shallow because they are no longer directly exploitable.

To quantify the security impact of Hacksaw, we study certain

driver/module CVEs mitigated by Hacksaw in depth to confirm

whether they might be triggered without corresponding hardware.

Since there is no public database for this, we first collect and inves-

tigate 189 Linux kernel CVEs which have public PoCs, write-ups,

or fuzzer harnesses from various sources
1
. Among them, 73 CVEs

are related to drivers or modules contained in our system images

and 39 out of these driver/module CVEs are inoperative and thus

removable by Hacksaw. We manually verify each one of them. In

total, we identify 29 driver/module CVEs which can be potentially

1
https://github.com/xairy/linux-kernel-exploitation, https://github.com/

SecWiki/linux-kernel-exploits, https://github.com/PurpleVsGreen/beacown,

https://github.com/tg12/PoC_CVEs

https://github.com/xairy/linux-kernel-exploitation
https://github.com/SecWiki/linux-kernel-exploits
https://github.com/SecWiki/linux-kernel-exploits
https://github.com/PurpleVsGreen/beacown
https://github.com/tg12/PoC_CVEs

Hacksaw: Hardware-Centric Kernel Debloating via Device Inventory and Dependency Analysis CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Table 8: CVEs which are potentially triggered without corre-

sponding hardware and can be mitigated by Hacksaw.

Channel CVEs

Sound-core CVE-2016-2543, CVE-2016-2544, CVE-2016-2545, CVE-2016-

2546, CVE-2016-2547, CVE-2016-2548, CVE-2016-2549, CVE-

2017-1000380

USB/IP CVE-2016-3955, CVE-2016-4482, CVE-2021-39685, CVE-

2022-25375

InfiniBand/iSCSI CVE-2016-4565, CVE-2021-27363, CVE-2021-27364, CVE-

2021-27365

mac80211_hwsim CVE-2018-8087, CVE-2022-41674, CVE-2022-42719, CVE-

2022-42720, CVE-2022-42721, CVE-2022-42722

Netlink CVE-2016-8658, CVE-2019-12984, CVE-2021-23134

Fake Bluetooth CVE-2021-3573

Virtual CAN CVE-2021-3609, CVE-2021-32606

VSOCK CVE-2021-26708

triggered without hardware—i.e., they can be potentially triggered

with software components or virtual devices included in the Linux

kernel (not in a hypervisor) as shown in Table 8. It is worth noting

that this study is limited because it is based on manual analysis

of CVE and PoC descriptions. Figuring out whether certain vul-

nerabilities are triggable and exploitable is still an open research

question.

Other architectures. Our Hacksaw prototype currently only

supports x86 (x64), but it can be easily extended to support other

architectures. This is because Hacksaw relies mostly on source

code and the ELF specification which architecture independent.

Also, many server- and desktop-class machines in other architec-

tures (e.g., Arm) already support both UEFI and ACPI [6], so we can

reliably probe and profile their hardware platforms. Only the binary

patching part needs to to be adjusted due to different instruction

sets, but it is straightforward because our implementation is based

on Capstone [12] which supports multiple architectures.

Limitations. In Hacksaw, we keep our analysis conservative to

avoid false positives. To this end, it might fail to delete certain

drivers, modules, or kernel functions even though they are safe to

delete. We conclude that the limitations of Hacksaw are coming

from three parts. First,Hacksaw selects the initial set of removable

(marked) modules and functions based on hardware information,

not based on whether they will be used or invoked by others (§4.3).

Thus, if it fails to extract the hardware information from certain

modules and functions (e.g., for legacy hardware without IDs), it

does not delete them regardless of their usage. Second, Hacksaw

deletes a module or a function only if it unconditionally depends

on or invokes marked modules or functions (§4.2 and §4.4). Cer-

tain conditional dependencies or function invocations will not be

resolved in practice, but Hacksaw does not leverage them. Third,

Hacksaw does not delete functions if their addresses are taken for

potential indirect calls (§4.2). Thus, it does not delete unused func-

tions if they are registered with function tables. To overcome these

limitations, Hacksaw can adopt advanced analysis techniques [51],

but it should accept some false positives.

8 RELATEDWORK

In this section, we explain studies related to Hacksaw.

System debloating. Numerous researchers propose mechanisms

to debloat systems software such as operating system kernels,

unikernels, containers, and hypervisors. Kernel tailoring [47] re-

duces the kernel’s attack surface by tuning it for a specific workload.

In a development environment, it runs a target workload while

recording kernel-level execution traces to figure out required ker-

nel build configuration options and rebuilds the kernel according to

them. Alharthi et al. [2] also confirm that such configuration-based

kernel debloating is effective to nullify many kernel vulnerabilities.

Cozart [45] improves configuration- and trace-based kernel debloat-

ing with instruction-level tracing from the early boot phase. Instead

of figuring out a build configuration to rebuild the kernel, which is

ad-hoc and often incomplete [28, 60, 80] and coarse-grained, Face-

Change [36] and KASR [88] use the hypervisor to provide different

kernel views (i.e., a restricted set of accessible or executable ker-

nel memory pages) for each application based on its kernel-level

execution trace. Also, temporal specialization [29], SHARD [1],

and C2C [30] modify the kernel to provide a custom set of sys-

tem calls to each application. In addition, other researchers rely

on execution traces to debloat unikernels [46, 53, 61], container

images [21, 69, 81], and device drivers [37, 40, 87].

Trace-based debloating mechanisms are highly effective in reduc-

ing the attack surface. However, they have a fundamental limitation

because they test or sample workloads to generate execution traces.

Thus, they cannot completely cover all possible cases, suffering from

false removals. Unlike those approaches, Hacksaw is guided by

the ground truth (i.e., whether certain hardware components exist),

so it is accurate. Trace-based debloating and Hacksaw are orthog-

onal and can complement each other. In addition, like Hacksaw,

delusional boot [59] relies on hardware information to debloat the

hypervisor. Also, Cocoon [38] uses hardware information to debloat

the kernel, but it rebuilds the kernel for every boot.

Driver isolation and bug finding. Device drivers are prone

to have many security vulnerabilities [15, 25, 31]. However, we

cannot simply remove them because they are critical to system

operations [42]. To overcome this security problem, researchers

propose driver isolation to ensure even if a driver is compromised, it

cannot tamperwith themain kernel. Variousmechanisms have been

used to realize driver isolation including Software Fault Isolation

(SFI) [13, 55], user-mode drivers [8], isolated virtual machines [3,

41, 57, 58], and hardware-assisted intra-kernel isolation [56].

Researchers also try to automatically find bugs from device dri-

vers to deal with this security problem. Some of them statically ana-

lyze device drivers to find bugs [7, 52]. Others fuzz the interfaces be-

tween applications and device drivers (e.g., ioctl()) [18, 44, 67, 89],

and between hardware components and device drivers (e.g., MMIO,

DMA) [39, 77–79, 90]. They further focus on fuzzing specific hard-

ware: e.g., Bluetooth [26, 27, 73], USB [43, 63], and virtual de-

vice [9, 76]. Both driver isolation and bug finding are orthogonal to

Hacksaw and can be adopted together to improve kernel security.

9 CONCLUSION

Hacksaw reduces the attack surface of the operating system kernel

by specializing it for a target machine according to the hardware

components attached to it. Hacksaw accurately removes inopera-

tive drivers, modules, and kernel functions based on the hardware

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Zhenghao Hu, Sangho Lee, and Marcus Peinado

device inventory and the dependency analysis without false re-

movals. Our evaluation with seven different hardware platforms

and 12 different source system images show that Hacksaw effec-

tively reduces their attack surfaces while ensuring the validity and

compatibility.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their helpful

feedback.

REFERENCES

[1] Muhammad Abubakar, Adil Ahmad, Pedro Fonseca, and Dongyan Xu. 2021.

SHARD: Fine-Grained Kernel Specialization with Context-Aware Hardening. In

Proceedings of the 30th USENIX Security Symposium (Security). Virtual.
[2] Mansour Alharthi, Hong Hu, Hyungon Moon, and Taesoo Kim. 2018. On the Ef-

fectiveness of Kernel Debloating via Compile-time Configuration. In Proceedings
of the Second Workshop on Forming an Ecosystem Around Software Transformation
(FEAST).

[3] Sebastian Angel, Riad S. Wahby, Max Howald, Joshua B. Leners, Michael Spilo,

Zhen Sun, Andrew J. Blumberg, and Michael Walfish. 2016. Defending against

malicious peripherals with Cinch. In Proceedings of the 25th USENIX Security
Symposium (Security). Austin, TX.

[4] Ioannis Angelakopoulos, Gianluca Stringhini, and Manuel Egele. 2023. Firm-

Solo: Enabling dynamic analysis of binary Linux-based IoT kernel modules. In

Proceedings of the 32nd USENIX Security Symposium (Security). Anaheim, CA.

[5] Patroklos Argyroudis and Dimitris Glynos. 2011. Protecting the Core: Kernel

Exploitation Mitigations. Black Hat Europe (2011).
[6] Arm. 2021. Software Just Works on Arm-Based Devices.

[7] Jia-Ju Bai, Tuo Li, Kangjie Lu, and Shi-Min Hu. 2021. Static Detection of Unsafe

DMA Accesses in Device Drivers. In Proceedings of the 30th USENIX Security
Symposium (Security). Virtual.

[8] Silas Boyd-Wickizer and Nickolai Zeldovich. 2010. Tolerating Malicious Device

Drivers in Linux. In Proceedings of the 2010 USENIX Annual Technical Conference
(ATC). Boston, MA.

[9] Alexander Bulekov, Bandan Das, Stefan Hajnocz, and Manuel Egele. 2022. Mor-

phuzz: Bending (Input) Space to Fuzz Virtual Devices. In Proceedings of the 31st
USENIX Security Symposium (Security). Boston, MA.

[10] Douglas Campbell and Chris Grevstad. 1985. A tutorial for make. In Proceedings
of the 1985 ACM Annual Conference on The Range of Computing.

[11] Javier Martinez Canillas. 2012. Kbuild: the Linux Kernel Build System. Linux
Journal (2012).

[12] Capstone. 2023. Capstone: The Ultimate Disassembly. https://www.capstone-

engine.org.

[13] Miguel Castro, Manuel Costa, Jean-Philippe Martin, Marcus Peinado, Periklis

Akritidis, Austin Donnelly, Paul Barham, and Richard Black. 2009. Fast Byte-

Granularity Software Fault Isolation. In Proceedings of the 22nd ACM Symposium
on Operating Systems Principles (SOSP). Big Sky, MT.

[14] Giacomo Catenazzi. 2023. LKDDb: Linux Kernel Driver DataBase. https:

//cateee.net/lkddb/.

[15] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou, Nickolai Zeldovich, and

M Frans Kaashoek. 2011. Linux kernel vulnerabilities: State-of-the-art defenses

and open problems. In Proceedings of the Second Asia-Pacific Workshop on Systems
(APSys).

[16] Jonathan Corbet. 2017. Restricting automatic kernel-module loading. https:

//lwn.net/Articles/740455/.

[17] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. 2005. Linux
Device Drivers. "O’Reilly Media, Inc.".

[18] Jake Corina, Aravind Machiry, Christopher Salls, Yan Shoshitaishvili, Shuang

Hao, Christopher Kruegel, and Giovanni Vigna. 2017. DIFUZE: Interface Aware

Fuzzing for Kernel Drivers. In Proceedings of the 24th ACMConference on Computer
and Communications Security (CCS). Dallas, TX.

[19] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In

Proceedings of the 14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS).

[20] devicetree.org. 2021. Devicetree Specification Release v0.4-rc1. https://www.

devicetree.org/specifications/.

[21] DockerSlim. 2022. DockerSlim. https://dockersl.im.

[22] FIRST. 2019. CommonVulnerability Scoring System v3.1: Specification Document.

https://www.first.org/cvss/v3.1/specification-document.

[23] Foundeo Inc. 2023. Linux Kernel - Security Vulnerabilities in 2023. https:

//stack.watch/product/linux/linux-kernel/.

[24] Foundeo Inc. 2023. Microsoft Windows 10 - Security Vulnerabilities in 2023.

https://stack.watch/product/microsoft/windows-10/.

[25] Archana Ganapathi, Viji Ganapathi, and David A Patterson. 2006. Windows

XP Kernel Crash Analysis. In Proceedings of the 20th Large Installation System
Administration Conference (LISA).

[26] Matheus E. Garbelini, Vaibhav Bedi, Sudipta Chattopadhyay, Sumei Sun, and

Ernest Kurniawan. 2022. BrakTooth: Causing Havoc on Bluetooth Link Manager

via Directed Fuzzing. In Proceedings of the 31st USENIX Security Symposium
(Security). Boston, MA.

[27] Matheus E. Garbelini, Chundong Wang, Sudipta Chattopadhyay, Sumei Sun, and

Ernest Kurniawan. 2020. SweynTooth: Unleashing Mayhem over Bluetooth Low

Energy. In Proceedings of the 2020 USENIX Annual Technical Conference (ATC).
[28] Paul Gazzillo. 2017. Kmax: Finding All Configurations of Kbuild Makefiles

Statically. In Proceedings of 2017 11th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE).

[29] SeyedhamedGhavamnia, Tapti Palit, ShacheeMishra, andMichalis Polychronakis.

2020. Temporal System Call Specialization for Attack Surface Reduction. In

Proceedings of the 29th USENIX Security Symposium (Security). Boston, MA.

[30] Seyedhamed Ghavamnia, Tapti Palit, and Michalis Polychronakis. 2022. C2C:

Fine-grained Configuration-driven System Call Filtering. In Proceedings of the
29th ACM Conference on Computer and Communications Security (CCS). Los
Angeles, CA.

[31] Kirk Glerum, Kinshuman Kinshumann, Steve Greenberg, Gabriel Aul, Vince

Orgovan, Greg Nichols, David Grant, Gretchen Loihle, and Galen Hunt. 2009.

Debugging in the (Very) Large: Ten Years of Implementation and Experience. In

Proceedings of the 22nd ACM Symposium on Operating Systems Principles (SOSP).
Big Sky, MT.

[32] Google Cloud. 2019. Migration to Google Cloud: Getting started. https://cloud.

google.com/architecture/migration-to-gcp-getting-started.

[33] Jay Gordon. 2021. On Prem To The Cloud: Lift and Shift (Ep 2). https://devblogs.

microsoft.com/devops/on-prem-to-the-cloud-lift-and-shift-ep-2/.

[34] Stephen J. Gowdy. 2023. The USB ID Repository. http://www.linux-usb.org/usb-

ids.html.

[35] GRIMM. 2021. New Old Bugs in the Linux Kernel. https://blog.grimm-co.com/

2021/03/new-old-bugs-in-linux-kernel.html.

[36] Zhongshu Gu, Brendan Saltaformaggio, Xiangyu Zhang, and Dongyan Xu. 2014.

Face-Change: Application-Driven Dynamic Kernel View Switching in a Virtual

Machine. In Proceedings of the 44th IEEE/IFIP International Conference on Depend-
able Systems and Networks (DSN).

[37] Zhongshu Gu, William N. Sumner, Zhui Deng, Xiangyu Zhang, and Dongyan Xu.

2013. DRIP: A Framework for Purifying Trojaned Kernel Drivers. In Proceedings
of the 43rd IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN).

[38] Bernhard Heinloth, Marco Ammon, Dustin T Nguyen, Timo Hönig, Volkmar

Sieh, and Wolfgang Schröder-Preikschat. 2019. Cocoon: Custom-Fitted Kernel

Compiled on Demand. In Proceedings of the 10th Workshop on Programming
Languages and Operating Systems (PLOS).

[39] Felicitas Hetzelt, Martin Radev, Robert Buhren, Mathias Morbitzer, and Jean-

Pierre Seifert. 2021. VIA: Analyzing Device Interfaces of Protected Virtual Ma-

chines. In Proceedings of the Annual Computer Security Applications Conference
(ACSAC).

[40] Zhenghao Hu and Brendan Dolan-Gavitt. 2022. IRQDebloat: Reducing Driver

Attack Surface in Embedded Devices. In Proceedings of the 43rd IEEE Symposium
on Security and Privacy (Oakland). San Francisco, CA.

[41] Yongzhe Huang, Vikram Narayanan, David Detweiler, Kaiming Huang, Gang

Tan, Trent Jaeger, and Anton Burtsev. 2022. KSplit: Automating Device Driver

Isolation. In Proceedings of the 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI). Carlsbad, CA.

[42] Asim Kadav and Michael M Swift. 2012. Understanding Modern Device Drivers.

In Proceedings of the 17th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS). London, UK.

[43] Kyungtae Kim, Taegyu Kim, Ertza Warraich, Byoungyoung Lee, Kevin RB Butler,

Antonio Bianchi, and Dave Jing Tian. 2022. FuzzUSB: Hybrid Stateful Fuzzing of

USB Gadget Stacks. In Proceedings of the 43rd IEEE Symposium on Security and
Privacy (Oakland). San Francisco, CA.

[44] Su Yong Kim, Sangho Lee, Insu Yun, Wen Xu, Byoungyoung Lee, Youngtae Yun,

and Taesoo Kim. 2017. CAB-Fuzz: Practical Concolic Testing Techniques for

COTS Operating Systems. In Proceedings of the 2017 USENIX Annual Technical
Conference (ATC). Santa Clara, CA.

[45] Hsuan-Chi Kuo, Jianyan Chen, Sibin Mohan, and Tianyin Xu. 2020. Set the

Configuration for the Heart of the OS: On the Practicality of Operating System

Kernel Debloating. Proceedings of the ACM on Measurement and Analysis of
Computing Systems (SIGMETRICS) 4, 1 (2020), 1–27.

[46] Hsuan-Chi Kuo, DanWilliams, Ricardo Koller, and Sibin Mohan. 2020. A Linux in

Unikernel Clothing. In Proceedings of the 15th European Conference on Computer
Systems (EuroSys). Crete, Greece.

[47] Anil Kurmus, Reinhard Tartler, Daniela Dorneanu, Bernhard Heinloth, Valentin

Rothberg, Andreas Ruprecht, Wolfgang Schröder-Preikschat, Daniel Lohmann,

and Rüdiger Kapitza. 2013. Attack Surface Metrics and Automated Compile-Time

https://www.capstone-engine.org
https://www.capstone-engine.org
https://cateee.net/lkddb/
https://cateee.net/lkddb/
https://lwn.net/Articles/740455/
https://lwn.net/Articles/740455/
https://www.devicetree.org/specifications/
https://www.devicetree.org/specifications/
https://dockersl.im
https://www.first.org/cvss/v3.1/specification-document
https://stack.watch/product/linux/linux-kernel/
https://stack.watch/product/linux/linux-kernel/
https://stack.watch/product/microsoft/windows-10/
https://cloud.google.com/architecture/migration-to-gcp-getting-started
https://cloud.google.com/architecture/migration-to-gcp-getting-started
https://devblogs.microsoft.com/devops/on-prem-to-the-cloud-lift-and-shift-ep-2/
https://devblogs.microsoft.com/devops/on-prem-to-the-cloud-lift-and-shift-ep-2/
http://www.linux-usb.org/usb-ids.html
http://www.linux-usb.org/usb-ids.html
https://blog.grimm-co.com/2021/03/new-old-bugs-in-linux-kernel.html
https://blog.grimm-co.com/2021/03/new-old-bugs-in-linux-kernel.html

Hacksaw: Hardware-Centric Kernel Debloating via Device Inventory and Dependency Analysis CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Kernel Tailoring. In Proceedings of the 20th Annual Network and Distributed System
Security Symposium (NDSS). San Diego, CA.

[48] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for

lifelong program analysis & transformation. In Proceedings of the International
Symposium on Code Generation and Optimization (CGO).

[49] Linux Kernel CVEs. 2023. Linux Kernel Vulnerability Tracker. https:

//linuxkernelcves.com.

[50] Linux Test Project. 2023. LTP - Linux Test Project. https://linux-test-project.

github.io.

[51] Kangjie Lu and Hong Hu. 2019. Where Does It Go? Refining Indirect-Call Targets

with Multi-Layer Type Analysis. In Proceedings of the 26th ACM Conference on
Computer and Communications Security (CCS). London, UK.

[52] Aravind Machiry, Chad Spensky, Jake Corina, Nick Stephens, Christopher

Kruegel, and Giovanni Vigna. 2017. DR.CHECKER: A Soundy Analysis for

Linux Kernel Drivers. In Proceedings of the 26th USENIX Security Symposium
(Security). Vancouver, Canada.

[53] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuenzer, Sumit

Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. 2017. My VM is Lighter

(and Safer) than you Container. In Proceedings of the 26th ACM Symposium on
Operating Systems Principles (SOSP). Shanghai, China.

[54] MohamadMansouri, Jun Xu, and Georgios Portokalidis. 2023. Eliminating Vulner-

abilities by Disabling Unwanted Functionality in Binary Programs. In Proceedings
of the 2023 ACM Asia Conference on Computer and Communications Security
(ASIACCS). Melbourne, Victoria, Australia.

[55] Yandong Mao, Haogang Chen, Dong Zhou, Xi Wang, Nickolai Zeldovich, and

M Frans Kaashoek. 2011. Software fault isolation with API integrity and multi-

principal modules. In Proceedings of the 23rd ACM Symposium on Operating
Systems Principles (SOSP). Cascais, Portugal.

[56] Derrick McKee, Yianni Giannaris, Carolina Ortega, Howard Shrobe, Mathias

Payer, Hamed Okhravi, and Nathan Burow. 2022. Preventing Kernel Hacks with

HAKCs. In Proceedings of the 2022 Annual Network and Distributed System Security
Symposium (NDSS). San Diego, CA.

[57] Vikram Narayanan, Abhiram Balasubramanian, Charlie Jacobsen, Sarah Spall,

Scott Bauer, Michael Quigley, Aftab Hussain, Abdullah Younis, Junjie Shen,

Moinak Bhattacharyya, and Anton Burtsev. 2019. LXDs: Towards Isolation of Ker-

nel Subsystems. In Proceedings of the 2019 USENIX Annual Technical Conference
(ATC). Renton, WA.

[58] Vikram Narayanan, Yongzhe Huang, Gang Tan, Trent Jaeger, and Anton Burtsev.

2020. Lightweight Kernel Isolation with Virtualization and VM functions. In

Proceedings of the 16th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments (VEE). Lausanne, Switzerland.

[59] Anh Nguyen, Himanshu Raj, Shravan Rayanchu, Stefan Saroiu, and Alec Wol-

man. 2012. Delusional Boot: Securing Cloud Hypervisors without Massive Re-

engineering. In Proceedings of the 7th European Conference on Computer Systems
(EuroSys). Bern, Switzerland.

[60] Jeho Oh, Necip Fazıl Yıldıran, Julian Braha, and Paul Gazzillo. 2021. Finding

Broken Linux Configuration Specifications by Statically Analyzing the Kconfig

Language. In Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE).

[61] Pierre Olivier, Daniel Chiba, Stefan Lankes, Changwoo Min, and Binoy Ravin-

dran. 2019. A Binary-Compatible Unikernel. In Proceedings of the 15th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments
(VEE). Providence, RI.

[62] PCI SIG. 2019. PCI Express Base Specification Revision 5.0 Version 1.0. https:

//members.pcisig.com/wg/PCI-SIG/document/13005.

[63] Hui Peng and Mathias Payer. 2020. USBFuzz: A Framework for Fuzzing USB Dri-

vers by Device Emulation. In Proceedings of the 29th USENIX Security Symposium
(Security). Boston, MA.

[64] Phoronix Media. 2023. Phoronix Test Suite - Linux Testing & Benchmarking Plat-

form, Automated Testing, Open-Source Benchmarking. https://www.phoronix-

test-suite.com.

[65] Albert Pool and Martin Mares. 2023. The PCI ID Repository. https://pci-

ids.ucw.cz.

[66] Alexander Popov. 2021. Four Bytes of Power: Exploiting CVE-2021-26708 in the

Linux kernel. https://a13xp0p0v.github.io/2021/02/09/CVE-2021-26708.html.

[67] Ivan Pustogarov, Qian Wu, and David Lie. 2020. Ex-vivo dynamic analysis

framework for Android device drivers. In Proceedings of the 41st IEEE Symposium
on Security and Privacy (Oakland). San Francisco, CA.

[68] Srikanth Rangavajhala and Prasanna Raghavendran. 2021. Lift and shift: Rehost

your workload on AWS to accelerate your cloud journey. https://docs.aws.

amazon.com/prescriptive-guidance/latest/strategy-rehosting/welcome.html.

[69] Vaibhav Rastogi, Drew Davidson, Lorenzo De Carli, Somesh Jha, and Patrick

McDaniel. 2017. Cimplifier: Automatically Debloating Containers. In Proceedings
of the 11th Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE).
Paderborn, Germany.

[70] Tristan Ravitch. 2023. travitch/whole-program-llvm: A wrapper script to build

whole-program LLVM bitcode files. https://github.com/travitch/whole-program-

llvm.

[71] Petter Reinholdtsen. 2013. Modalias strings - a practical way to map “stuff”

to hardware. http://people.skolelinux.org/pere/blog/Modalias_strings___a_

practical_way_to_map__stuff__to_hardware.html.

[72] Rami Rosen. 2013. Resource management: Linux kernel Namespaces and cgroups.

http://www.haifux.org/lectures/299/netLec7.pdf.

[73] Jan Ruge, Jiska Classen, Francesco Gringoli, and Matthias Hollick. 2020. Franken-

stein: Advanced Wireless Fuzzing to Exploit New Bluetooth Escalation Targets.

In Proceedings of the 29th USENIX Security Symposium (Security). Boston, MA.

[74] Barbara G Ryder. 1979. Constructing the call graph of a program. IEEE Transac-
tions on Software Engineering 3 (1979), 216–226.

[75] Michael S. 2019. Linux kernel module autoloading. https://duasynt.com/blog/

linux-kernel-module-autoloading.

[76] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi, SimonWörner, and Thorsten

Holz. 2021. Nyx: Greybox Hypervisor Fuzzing using Fast Snapshots and Affine

Types. In Proceedings of the 30th USENIX Security Symposium (Security). Virtual.
[77] Zekun Shen, Ritik Roongta, and Brendan Dolan-Gavitt. 2022. Drifuzz: Harvesting

Bugs in Device Drivers from Golden Seeds. In Proceedings of the 31st USENIX
Security Symposium (Security). Boston, MA.

[78] Dokyung Song, Felicitas Hetzelt, Dipanjan Das, Chad Spensky, Yeoul Na, Stijn

Volckaert, Giovanni Vigna, Christopher Kruegel, Jean-Pierre Seifert, and Michael

Franz. 2019. PeriScope: An Effective Probing and Fuzzing Framework for the

Hardware-OS Boundary. In Proceedings of the 2019 Annual Network and Dis-
tributed System Security Symposium (NDSS). San Diego, CA.

[79] Dokyung Song, Felicitas Hetzelt, Jonghwan Kim, Brent Byunghoon Kang, Jean-

Pierre Seifert, and Michael Franz. 2020. Agamotto: Accelerating Kernel Driver

Fuzzing with Lightweight Virtual Machine Checkpoints. In Proceedings of the
29th USENIX Security Symposium (Security). Boston, MA.

[80] Reinhard Tartler, Daniel Lohmann, Julio Sincero, and Wolfgang Schröder-

Preikschat. 2011. Feature Consistency in Compile-Time-Configurable System

Software: Facing the Linux 10,000 Feature Problem. In Proceedings of the 6th
Conference on Computer Systems (EuroSys).

[81] Jörg Thalheim, Pramod Bhatotia, Pedro Fonseca, and Baris Kasikci. 2018. CNTR:

Lightweight OS Containers. In Proceedings of the 2018 USENIX Annual Technical
Conference (ATC). Boston, MA.

[82] The kernel development community. 2023. Development tools for the kernel.

https://www.kernel.org/doc/html/latest/dev-tools/index.html.

[83] The kernel development community. 2023. Device drivers infrastructure. https:

//www.kernel.org/doc/html/latest/driver-api/infrastructure.html.

[84] The kernel development community. 2023. Platform Devices and Drivers. https:

//www.kernel.org/doc/html/latest/driver-api/driver-model/platform.html.

[85] The kernel development community. 2023. Seccomp BPF (Secure Computing

with Filters). https://www.kernel.org/doc/html/latest/userspace-api/seccomp_

filter.html.

[86] UEFI Form, Inc. 2022. ACPI Specification 6.5. https://uefi.org/specs/ACPI/6.5/.

[87] JianliangWu, RuoyuWu, Daniele Antonioli, Mathias Payer, Nils Ole Tippenhauer,

Dongyan Xu, Dave Jing Tian, and Antonio Bianchi. 2021. LightBlue: Automatic

Profile-Aware Debloating of Bluetooth Stacks. In Proceedings of the 30th USENIX
Security Symposium (Security). Virtual.

[88] Zhi Zhang, Yueqiang Cheng, Surya Nepal, Dongxi Liu, Qingni Shen, and Fethi

Rabhi. 2018. KASR: A Reliable and Practical Approach to Attack Surface Reduc-

tion of Commodity OS Kernels. In Proceedings of the International Symposium on
Research in Attacks, Intrusions, and Defenses (RAID).

[89] Bodong Zhao, Zheming Li, Shisong Qin, Zheyu Ma, Ming Yuan, Wenyu Zhu,

Zhihong Tian, and Chao Zhang. 2022. StateFuzz: System Call-Based State-Aware

Linux Driver Fuzzing. In Proceedings of the 31st USENIX Security Symposium
(Security). Boston, MA.

[90] Wenjia Zhao, Kangjie Lu, Qiushi Wu, and Yong Qi. 2022. Semantic-Informed

Driver Fuzzing Without Both the Hardware Devices and the Emulators. In Pro-
ceedings of the 2022 Annual Network and Distributed System Security Symposium
(NDSS). San Diego, CA.

https://linuxkernelcves.com
https://linuxkernelcves.com
https://linux-test-project.github.io
https://linux-test-project.github.io
https://members.pcisig.com/wg/PCI-SIG/document/13005
https://members.pcisig.com/wg/PCI-SIG/document/13005
https://www.phoronix-test-suite.com
https://www.phoronix-test-suite.com
https://pci-ids.ucw.cz
https://pci-ids.ucw.cz
https://a13xp0p0v.github.io/2021/02/09/CVE-2021-26708.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-rehosting/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-rehosting/welcome.html
https://github.com/travitch/whole-program-llvm
https://github.com/travitch/whole-program-llvm
http://people.skolelinux.org/pere/blog/Modalias_strings___a_practical_way_to_map__stuff__to_hardware.html
http://people.skolelinux.org/pere/blog/Modalias_strings___a_practical_way_to_map__stuff__to_hardware.html
http://www.haifux.org/lectures/299/netLec7.pdf
https://duasynt.com/blog/linux-kernel-module-autoloading
https://duasynt.com/blog/linux-kernel-module-autoloading
https://www.kernel.org/doc/html/latest/dev-tools/index.html
https://www.kernel.org/doc/html/latest/driver-api/infrastructure.html
https://www.kernel.org/doc/html/latest/driver-api/infrastructure.html
https://www.kernel.org/doc/html/latest/driver-api/driver-model/platform.html
https://www.kernel.org/doc/html/latest/driver-api/driver-model/platform.html
https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html
https://uefi.org/specs/ACPI/6.5/

	Abstract
	1 Introduction
	2 Background: Device Driver Model
	2.1 Basic Entities
	2.2 Device/Driver Binding and Registration
	2.3 Driver Compilation and Loading

	3 Threat Model and Assumption
	4 Design
	4.1 Device Driver Lookup (T1)
	4.2 Dependency Analysis (T2)
	4.3 Hardware Probing (T3)
	4.4 Function Removal (T4)

	5 Implementation
	5.1 Device Driver Lookup
	5.2 Dependency Analysis
	5.3 Hardware Probing
	5.4 Function Removal

	6 Evaluation
	6.1 Environment
	6.2 Module and Function Removal (RQ1)
	6.3 Vulnerability Mitigation (RQ2)
	6.4 Validity (RQ3)
	6.5 Compatibility (RQ4)

	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

