
Exploring and Mitigating Privacy Threats of HTML5
Geolocation API ∗

Hyungsub Kim
Dept. of CSE, POSTECH

Pohang, Korea
hyungsubkim@postech.ac.kr

Sangho Lee
Dept. of CSE, POSTECH

Pohang, Korea
sangho2@postech.ac.kr

Jong Kim
Dept. of CSE, POSTECH

Pohang, Korea
jkim@postech.ac.kr

ABSTRACT
The HTML5 Geolocation API realizes location-based services via
the Web by granting web sites the geographical location information
of user devices. However, the Geolocation API can violate a user’s
location privacy due to its coarse-grained permission and location
models. The API provides either exact location or nothing to web
sites even when they only require approximate location. In this paper,
we first conduct case studies on numerous web browsers and web
sites to explore how they implement and utilize the Geolocation API.
We detect 14 vulnerable web browsers and 603 overprivileged web
sites that can violate a user’s location privacy. To mitigate the privacy
threats of the Geolocation API, we propose a novel scheme that
(1) supports fine-grained permission and location models, and (2)
recommends appropriate privacy settings to each user by inspecting
the location sensitivity of each web page. Our scheme can accurately
estimate each web page’s necessary geolocation degree (estimation
accuracy: ∼93.5%). We further provide suggestions to improve the
Geolocation API.

1. INTRODUCTION
Location-based services (LBSs) are popular personalized services

that are tightly associated with user privacy. Examples of LBSs
include navigation services, local search services, traffic alert ser-
vices, and localized weather services, which are especially useful
for mobile device users. However, without assured privacy, users
may not trust LBSs. Therefore, following the seminal work of
Gruteser and Grunwald [13], numerous researchers propose various
schemes [5, 7–9, 20, 23, 31, 32] to ensure location privacy in LBSs.

LBSs via the Web have become necessary because the number
of mobile devices that access the Web has increased. The HTML5
specification satisfies such requirements by defining the Geoloca-
tion API [29] which grants permission to access the geographical
location information (geolocation) of devices to web sites. The
API consists of two methods: GetCurrentPosition(), which
retrieve current geolocation including latitude and longitude; and
watchPosition(), which tracks updated position according to
∗This work was supported by ICT R&D program of MSIP/IITP.
[14-824-09-013, Resilient Cyber-Physical Systems Research]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

user movements. The accuracy of the geolocation depends on the
type of user device. For example, smart mobile devices allow web
browsers to precisely estimate the device’s geolocation by using
various sources, such as the global positioning system (GPS), cell
towers, and Wi-Fi access points (APs).

However, we identify that the current specification and implemen-
tations of the Geolocation API face four privacy threats, which are
especially harmful to mobile device users along with exact geoloca-
tion. (1) They employ no fine-grained location model. Even if a web
site only wants to know which country a user is in, both the web site
and the user cannot decrease geolocation accuracy when requesting
or delivering it. Furthermore, the web site should perform geocod-
ing to obtain country information from the received geolocation. (2)
They employ no per-method permission model. A user must allow a
web site to track his or her movements even when the user only wants
to allow the site to retrieve the current geolocation. (3) They em-
ploy a per-domain permission model without a per-page permission
model. A user cannot allow a web page site.com/map.html
to access the geolocation while disallowing another web page under
the same domain site.com/mail.html to access the geoloca-
tion. (4) They employ no re-confirm process for changed web pages.
A web site preserves its permissions to access the geolocation, even
though it modifies or deletes the original web page that a user has
permitted. We must solve these privacy problems to ensure the
location privacy of users in LBSs via the Web.

In this paper, we first explore real-world privacy problems of the
Geolocation API due to vulnerable web browsers and overprivileged
web sites. We analyze a number of web browsers for popular mobile
platforms (Android and iOS) to inspect (1) the number of web
browsers that support Geolocation API, (2) the number of vulnerable
web browsers that allow any web site to access the geolocation
without user permissions, and (3) their interfaces to grant or revoke
permissions. We have detected 14 vulnerable web browsers installed
on more than 16 million Android devices via Google Play Store, and
have reported the security problem to the browser developers.

We also analyze 1,196 web sites that use the Geolocation API to
identify their characteristics and the degree of geolocation that they
demand. We discover that approximately half of the web sites using
the Geolocation API are overprivileged, i.e., they are irrelevant to
precise geolocation, because their content does not much change
even when we provide completely different geolocation.

Next, we propose a novel scheme for mitigating the privacy prob-
lems of the Geolocation API by supporting fine-grained permis-
sion/location models and measuring each web page’s location sen-
sitivity. We modify an open-source web browser for Android to
(1) grant different degrees of geolocation to different domains/web
pages, (2) separate permissions for location tracking, (3) support
both per-domain and per-page permission models, and (4) inspect

web page changes and re-confirm permissions for changed web
pages. Furthermore, our web browser can estimate a web page’s
location sensitivity and use this estimate to recommend a privacy
setting to its user.

Evaluation results show that our scheme has low overhead while
precisely estimating each web page’s necessary geolocation degree
(∼93.5% of estimation accuracy).

This paper makes the following contributions:
• In-depth analysis. To the best of our knowledge, this is the

first study that analyzes the privacy problems of the HTML5
Geolocation API in depth.

• New case study. We conduct the first case studies on the
Geolocation API regarding various web browsers and web
sites, and discover a number of vulnerable web browsers and
overprivileged web sites.

• Effective countermeasure. We propose effective counter-
measures against the Geolocation API’s privacy problems
by modifying a web browser to support fine-grained permis-
sion/location models and inspect a web page’s location sensi-
tivity while considering portability and compatibility.

• Reasonable suggestions. We offer some suggestions to im-
prove the Geolocation API, such as accuracy options, per-
method permissions, and per-page permissions.

The remainder of this paper is organized as follows. §2 explains the
HTML5 Geolocation API. §3 conducts case studies on web browsers
and web sites with the HTML5 Geolocation API. §4 introduces
the threat model and assumptions of this work. §5 explains our
countermeasure in details. §6 discusses the limitations of this work
and our suggestions to reduce the privacy threats of the Geolocation
API. §7 introduces related work. Lastly, §8 concludes this work.

2. BACKGROUND
In this section, we briefly explain the current localization tech-

nologies, the Geolocation API of HTML5, and privacy concerns
residing in the specification of the Geolocation API.

2.1 Localization Technologies
Smart mobile devices estimate their geographical location by

using the global positioning system (GPS), cell-tower triangula-
tion, and Wi-Fi access point (AP) triangulation [11, 14]. The GPS
provides highly accurate latitude, longitude, altitude, heading, and
speed information to the devices. Its accuracy can be up to several
meters. The GPS, however, has two problems: (1) it takes time to
initialize the communication between a GPS receiver and GPS satel-
lites; and (2) it usually does not work indoors because GPS signals
are difficult to penetrate roofs, walls, and other objects [21]. To
overcome these problems, smart mobile devices also use cell-tower-
based or Wi-Fi-based triangulation, or both to estimate their latitude
and longitude information. Although the triangulation immediately
returns location information and supports indoor positioning, its
accuracy can be up to several hundreds (Wi-Fi) or thousands (cell
tower) of meters. Its coverage and accuracy also depend on whether
LBS providers (e.g., Google) correctly and widely collect the loca-
tion information of cell towers and Wi-Fi APs.

2.2 HTML5 Geolocation API
The HTML5 specification defines the Geolocation API [29] that

allows web sites to access the geolocation of user devices. This API
consists of two methods. (1) getCurrentPosition() inspects
geolocation of user devices including latitude, longitude, accuracy,
altitude, heading, speed, and timestamp. (2) watchPosition()
continually retrieves the current geolocation of user devices accord-
ing to user movements. Both methods have a mandatory parameter

var map=document.getElementById("map");

function getLocation() {
Ê if (navigator.geolocation) {
Ë navigator.geolocation.getCurrentPosition(

showPosition);
}
else {
map.innerHTML="This browser does not support

HTML5 Geolocation API.";
}

}

function showPosition(position) {
Ì var latlon=position.coords.latitude+","+

position.coords.longitude;

Í var img_url="http://maps.googleapis.com/maps/
api/staticmap?center="+latlon+"&zoom=13&size
=500x400&maptype=hybrid&sensor=true";

Î map.innerHTML="";
}

Figure 1: JavaScript code to obtain a Google map image based on
the current geolocation. It inspects whether a web browser supports
the Geolocation API (Ê), obtains the geolocation (Ë), parses the
geolocation (Ì), receives a map-image URL from the Google map
(Í), and displays the map image (Î).

PositionCallback that specifies a callback function to execute
when they successfully obtain the geolocation.

Figure 1 shows a JavaScript code that uses the getCurrentPo-
sition() method to check a user’s current geolocation on the
Google map (we refer [30].) The code first inspects whether a web
browser supports the Geolocation API (Ê). If the web browser sup-
ports the Geolocation API, the code calls the getCurrentPosi-
tion() method to obtain the current geolocation of the user (Ë).
When the method successfully retrieves the geolocation, it calls a
callback function showPosition(). The callback function reads
the current geolocation in an argument position (Ì), receives
a map-image URL from the Google map by using the geoloca-
tion (Í), and embeds the image URL in HTML content (Î). In
addition, if we use the watchPosition() method instead of
the getCurrentPosition() method, we can easily track the
geolocation changes of the user.

The methods of the Geolocation API have two optional param-
eters. (1) PositionErrorCallback specifies a callback func-
tion to execute when they fail to obtain the geolocation. (2) Posi-
tionOptions represents a JavaScript object consisting of three at-
tributes: enableHighAccuracy represents whether a web page
prefers the best possible results (i.e., it demands GPS-based geolo-
cation,) timeout represents the amount of time that the web page
waits for receiving the geolocation, and maximumAge indicates
the validity period of cached geolocation data. The default value
of enableHighAccuracy is false to reduce power consump-
tion due to GPS receivers, and the default values of timeout and
maximumAge are “Infinity”.

2.3 Privacy Concerns of Geolocation API
The Geolocation API specification [29] regulates some require-

ments of both web browsers and web sites to preserve user privacy.
First, web browsers need to obtain permissions from users for each
web site when it attempts to utilize the Geolocation API. Web sites
can use the geolocation information only when the users grant per-

Table 1: How the 60 Android web browsers support the Geolocation
API.

Geolocation permission Number
Permanent & temporary 18
Permanent only 7
No permission check 14
Not available 21

Table 2: Vulnerable Android web browsers that do not ask for the
Geolocation permissions.

Name Version #Downloads
Baidu Browser 4.1.0.3 10,000,000+
Maxthon Browser for Android 4.3.0.2000 5,000,000+
Angel Browser 12.30z 500,000+
Maxthon Web Browser for Tablet 4.0.4.1000 500,000+
Exsoul Web Browser 3.3.3 100,000+
Full Screen Browser 2.3 100,000+
Harley Browser 1.3.4 100,000+
Maxthon Browser for Pioneer 2.7.3.1000 100,000+
Safe Browser - The Web Filter 1.2.5 100,000+
Baidu Browser for Tablet 1.3.0.2 100,000+
Habit Browser 1.1.25 100,000+
Browser Omega 2.6.1 50,000+
Jelly Web Browser 1.1.4 10,000+
Zomi Mobile Browser 2.6.6 10,000+
Total 16,770,000+

missions. Second, the web browsers have to provide a user-friendly
interface to revoke the granted permissions.

The specification also mentions other privacy problems in the non-
normative section: (1) users may inadvertently grant permissions to
web sites, and (2) already-permitted web sites can silently change
their content regardless of a user’s intention.

However, the specification mentions no countermeasures against
these problems. It leaves to implementers the responsibility of
solving the problems.

3. CASE STUDIES
In this section, we conduct case studies on the HTML5 Geolo-

cation API to identify how web browsers and web sites implement
and utilize it. The case studies are helpful to explore the real-world
privacy problems of the Geolocation API.

3.1 Case Study of Web Browsers

3.1.1 Android
We collect and analyze 60 free web browsers for Android on

Google Play Store in August 2014, which had been installed more
than 10,000 times. Except some major web browsers (e.g., Chrome
and Firefox), most web browsers for Android rely on WebView [2]
which allows Android Apps to embed a customized web browser.
We use a Galaxy S III (Android 4.3) and a Galaxy Nexus (Android
4.2) when testing the web browsers.

We first investigate how the 60 Android web browsers support
the Geolocation API (Table 1). We detect 39 web browsers that
support the Geolocation API. They consist of 18 web browsers that
support both permanent and temporary (one time) permissions, 7
web browsers that only support permanent permissions, and 14 web
browsers that do not ask for user permissions.

More than 16 million Android users have installed the 14 vulner-
able web browsers that do not ask for permission (Table 2). Their
actual number is certainly larger than 16 million because the number

(a) Stock Android browser (4.2). (b) Android (Firefox 27).

(c) Android (Chrome 32). (d) iOS 7.
Figure 2: Dialogs for requesting permissions to access geolocation.

of downloads shown in Google Play Store is a lower bound (Google
does not reveal the exact number of downloads.) For example,
“5,000,000+ downloads” means that the actual number of downloads
is between five million and 10 million. Furthermore, Android users
may install the vulnerable web browsers via alternative markets or
by using Android application package (APK) files. If users visit
web sites with the vulnerable browsers, the sites can silently collect
the users’ geolocation by exploiting the browsers. Therefore, we
suggest that the developers of the vulnerable web browsers need to
fix the problem (details: §3.2).

Figures 2a, 2b, and 2c show permission dialogs of the major web
browsers for Android when users attempt to access a web page
that uses the Geolocation API [30]. All of the web browsers give
permissions not to web pages but to domains. Furthermore, the stock
Android browser (Figure 2a) and Firefox for Android (Figure 2b)
support temporary permissions for accessing geolocation whereas
Chrome for Android does not (Figure 2c).

Lastly, we investigate the interfaces to determine which of them
allow users to revoke the granted permissions stored in the Android
web browsers. Among the 25 web browsers that support the Geolo-
cation API and ask for user permission, only six Android Browser,
Chrome Browser, Firefox, iLunascape 2 - Web Browser, Sleipnir
Mobile - Web Browser, and Skyfire Web Browser 5.0 allow users to
revoke the granted permissions of each domain. With the remaining
19 web browsers, users must delete all granted permissions even if
they only want to revoke the permission of a single domain.

3.1.2 iOS
We collect and analyze the top 30 free web browsers for iOS on

App Store (e.g., Chrome and Mercury Browser) as of September
2013, and identify that most of the web browsers for iOS use the
same mechanism to manage the Geolocation API and permissions.
The reason is that Apple forces developers to use UIWebView [3]
when rendering web pages to harden security. Exceptions are cloud-
based web browsers (e.g., Opera Mini and Puffin) that have no
JavaScript engine, but they do not support the Geolocation API. We
use iPad (third generation with iOS 7) when testing the browsers.

We confirm that the web browsers for iOS only have the perma-
nent permission model for the Geolocation API. Figure 2d shows
an example of their permission dialog which requests a permanent
geolocation permission for a domain.

Lastly, we identify that users should use the unified interface
of iOS to reset all location and privacy permission settings when
they want to revoke the geolocation permissions granted to web
sites. After resetting, all apps and web sites must obtain permissions
again to access both geolocation and other private information (e.g.,
calendars, reminders, and photos). Undoubtedly, this is highly

.method public
onGeolocationPermissionsShowPrompt(

Ljava/lang/String;
Landroid/webkit/

GeolocationPermissions$Callback;)V

.locals 2

.parameter

.parameter

.prologue

.line 225
const/4 v0, 0x1
const/4 v1, 0x0

à invoke-interface {p2, p1, v0, v1},
Landroid/webkit/

GeolocationPermissions$Callback;
->invoke(Ljava/lang/String;ZZ)V

.line 227
return-void

.end method

Figure 3: Decompiled onGeolocationPermissionsShow-
Prompt() of the Maxthon Browser for Android.

inconvenient for users.

3.2 Details of Vulnerable Web Browsers
We analyze the vulnerable Android web browsers to know why

they do not prompt geolocation permission dialogs and finally detect
that this flaw is due to mis-implemented onGeolocationPermi-
ssionsShowPrompt()methods. The onGeolocationPer-
missionsShowPrompt()method of the WebChromeClient
class is essential to support the Geolocation API in WebView-based
browsers because they call the method when an unseen web site
attempts to use the Geolocation API [1]. This method should in-
voke a callback method to set permissions with three parameters:
(1) a domain name, (2) whether a user allows (true) or blocks
(false) the domain, and (3) whether the granted permission is
permanent (true) or temporary (false). However, if the method
always invokes the callback method with true as the second ar-
gument, web browsers always allow any web site to access the
geolocation without user permissions. Accordingly, we expect that
the onGeolocationPermissionsShowPrompt() method
of the vulnerable browsers always invokes the callback method with
true.

Figure 3 shows the decompiled onGeolocationPermissi-
onsShowPrompt()method of the Maxthon Browser for Android
with apktool (the results of other browsers are similar.) As we
expect, the method has no instructions to pop up a permission dia-
log and invokes a callback method while statically assigning true
(0x1) to the second argument v0 (à, p2 is the 0th argument repre-
senting the callback method.)

Consequently, we believe that developers need to carefully imple-
ment onGeolocationPermissionsShowPrompt() meth-
ods and Google has to provide a built-in permission dialog to elimi-
nate such a vulnerability.

We reported the security problem to the browser developers.
Some of them replied that they would patch it in a future release.

3.3 Case Study of Web Sites
We collect 1196 web pages that use the Geolocation API; to do

this we (1) inspect web sites listed on Alexa, (2) use the Google

Table 3: Categories of web pages using the Geolocation API.
Category Number %
Near me 667 55.77
Local information 288 24.08
Weather 55 4.60
Geographic information 53 4.43
Social networking 42 3.51
Traffic information 32 2.68
News 13 1.09
Others 46 3.85

Table 4: Location sensitivity of web pages using the Geolocation
API.

Sensitivity Number %
Pinpoint 593 49.58
City 426 35.62
State 22 1.84
Country 18 1.51
Unchanged 137 11.45

search engine with keywords, such as “near me” and “around me”,
and (3) use an HTML code search engine [10] with keywords, such
as “getCurrentPosition” and “watchPosition”, between August 2013
and September 2013, then inspect them. Each of the three sources
contributes 246, 140, and 810 web pages, respectively. When we
visit web sites, we use user-agent strings of Android or iPhone web
browsers and recursively retrieve child web pages. We manually ver-
ify that most of the collected web pages provide “near me” services
to inform point of interest (POI) locations (e.g., stores, buildings,
and the sights) or local information (e.g., local radio and TV chan-
nels)1. Table 3 summarizes the results. We also find other web pages,
including those for local weather services, geographic information,
location-based online social networks, local traffic information, and
local news.

We aim to inspect the location sensitivity of the collected web
pages to decide whether they are overprivileged. We manually
perform the following procedure: (1) preparing a number of GPS
coordinates around famous cities, (2) visiting the web pages while
using various geolocations based on the GPS coordinates, and (3)
verifying whether the web pages change according to the given
geolocation. We treat street-level changes are equivalent to pinpoint-
level changes because both levels are sufficiently fine grain. We
thereby compare them for verifying pinpoint-, city-, and state-level
geolocation changes, respectively. We also use locations around
famous cities of other countries, such as Calgary (Canada), Paris
(France), Seoul (Korea), and Sydney (Australia), to analyze whether
some web pages work for a specific country. When visiting the web
pages, we use Developer Tools (Chrome) or User Agent Switcher
and Geolocator extensions (Firefox) to change the user agent strings
and geolocation of web browsers.

Our inspection of the location sensitivity of the collected web
pages reveals that half of them do not need to use exact geolocation
(Table 4). Except for 49.6% of the web pages that demand pinpoint
geolocation, other web pages provide city-, state-, or country-level
information (35.6%, 1.8%, and 1.5%, respectively). For example,
Groupon’s web page for nearby deals provides city-level informa-
tion; it surely does not need to obtain exact geolocation. Interest-
ingly, the content of 137 web pages (11.5%) does not change even
when we alter the geolocation drastically. We confirm that they
unnecessarily demand geolocation by manually investigating them.
1Five graduate students participated in manual inspection. Decisions
were made by majority voting.

(a) At a latitude of 40.71365
and a longitude of -74.00971.

(b) At a latitude of 40.71500
and a longitude of -74.01000.

Figure 4: Mobile web pages of Walmart to find the nearest stores
from two places in New York.

3.4 Considerations on “Near Me” Services
Even though the “near me” services include notable LBSs that use

exact geolocation, we expect that many of these services can provide
the same functionalities without relying on such exact geolocation.
As an example, we consider a “near me” service web page of Wal-
mart to find the nearest stores as an example (http://mobile.
walmart.com/m/phoenix#location/locate). When we
visit the web page with two slightly different GPS coordinates, lat-
itudes and longitudes are (40.71365, -74.00971) and (40.71500,
-74.01000). Walmart redirects us to two slightly different web pages
(Figures 4a and 4b). Therefore, the “near me” service web page
demands exact geolocation. The URLs of the final web pages are
http://mobile.walmart.com/m/phoenix#location/
list/40.713/-74.009 and http://mobile.walmart.
com/m/phoenix#location/list/40.715/-74.010, re-
spectively, so Walmart can know the GPS coordinates of visitors
from GET request parameters.

However, Walmart can use the city-level geolocation for pro-
viding the same service to mitigate privacy threats while reducing
computational overhead. They can provide this service by (1) de-
livering a list of GPS-coordinates of its stores in New York to web
browsers and (2) allowing the web browsers to execute a JavaScript
code to calculate the distances between the stores and the user’s
current geolocation. Walmart does not need to compute and sort the
distances, so it can reduce computational overhead especially when
the number of concurrent users is large. Although each browser
needs to perform some computations instead of Walmart, it can
protect exact geolocation from Walmart. Consequently, we believe
that this approach is good for both web sites and their users.

4. THREAT MODEL AND ASSUMPTIONS
In this section, we explain the threat model and assumptions of

this work before introducing our scheme for mitigating the privacy
threats of the HTML5 Geolocation API.

First, we assume that our attackers are honest-but-curious LBS
providers, who use the Geolocation API in a legitimate but overpriv-
ileged way. They attempt to obtain precise geolocation of users even
when their LBSs demand neither precise nor timely geolocation.

Check Page

Permission

Check Domain

Permission

Per-domain DB

Position Tracking

Execute Error

Callback

Decrease

Geolocation

Accuracy Show

Geolocation

Dialog

Update DB

Denied

NonexistAllowed

Allowed Nonexist

Denied

Retrieve

Geolocation

Per-page DB

Positionn Tracking
Changed

Geolocation API Called

Unchanged

Original

functions

Modified

functions

New

functions

Procedure DB operation

1a

1

2

2a

1c

5

6

Execute

Callback

3

Verify Page

Changes

1b

Inspect

Location

Sensitivity

4

Figure 5: Overview of the proposed scheme.

Therefore, we focus on how to restrict the privilege of web sites in a
fine-grained way.

Second, we assume that the attackers try to implicitly access
the geolocation without user interaction. In the case studies, we
discover some web sites that explicitly demand user interaction
whenever the sites access the geolocation (e.g., users should click
a button or type some search keywords to use LBSs.) Such user
interaction reminds users that they are granting their geolocation to
the web sites; they may deny it at that time to ensure privacy. Con-
sequently, the attackers would not demand such explicit interaction
when requesting geolocation, so we focus on geolocation requests
without user interaction.

Lastly, we assume that both the web sites providing LBSs and
the web browsers visiting the web sites have no vulnerability that
attackers can exploit. External attackers cannot inject a malicious
script into vulnerable web pages or exploit vulnerable web browsers
to access geolocation. For this reason, we do not consider solutions
to detect script injections and to mitigate vulnerabilities because
they are out of the scope of this paper.

5. PROPOSED SCHEME
In this section, we explain the proposed scheme for mitigating

the Geolocation API’s privacy threats. We implement the proposed
scheme on Android because it is popular and allows custom web
browsers unlike iOS.

5.1 Overall Design
We explain the overall design of the proposed scheme. When a

user visits a web page that contains a JavaScript code to execute
the Geolocation API, the proposed scheme handles the execution as
follows (Figure 5).

1. The proposed scheme checks whether the domain serving the
code exists in a per-domain permission database (DB). If the
domain exists in the DB and the user allows the domain, the
scheme goes to Step 2. If the domain does not exist in the
DB, it goes to Step 1a. If the user denies the domain, it goes
to Step 6.

1a. The proposed scheme checks whether the web page

serving the code exists in a per-page permission DB. If
the web page exists in the DB and the user allows the
web page, the scheme goes to Step 1b. If the web page
does not exist in the DB, it goes to Step 1c. If the user
denies the web page, it goes to Step 6.

1b. The proposed scheme verifies whether the web page
changes after obtaining permissions. If the degree of
changes exceeds a threshold value, it goes to Step 1c,
otherwise, it goes to Step 2.

1c. The proposed scheme composes an enhanced Geoloca-
tion permission dialog which asks the user to (1) either
allow or deny the domain/web page, (2) inspect the loca-
tion sensitivity of web page, (3) choose the geolocation
accuracy, and (4) grant either temporary or permanent
permissions. It then goes to either Step 4 or Step 5
according to the user’s choices.

2. The proposed scheme retrieves precise geolocation from the
OS (Android) and goes to Step 2a.

2a. The proposed scheme decreases geolocation accuracy
according to the allowed geolocation accuracy of the
domain/web page stored in per-domain/per-page DBs.
It then goes to Step 3.

3. The proposed scheme terminates while executing a success
callback function with (less accurate) geolocation. The web
page’s JavaScript code handles the remaining procedures such
as composing an HTML document and rendering.

4. The proposed scheme inspects the location sensitivity of the
web page to estimate the necessary geolocation degree. When
composing a Geolocation permission dialog, it uses the sensi-
tivity information. It then returns to Step 1c.

5. The proposed scheme updates DBs according to a user’s
choices and goes to Step 1 to re-initiate the procedures.

6. The proposed scheme terminates while executing an error
callback function when the user denies the domain/web page
demanding geolocation.

We respectively apply the explained procedures to GetCurrent-
Position() and watchPosition() as we separate the per-
missions for position and tracking.

5.2 Inspecting Geolocation Web Pages
We explain how our web browser verifies the changes in a web

page that uses the Geolocation API and measures the location sensi-
tivity of the web page.

5.2.1 Verifying web page changes
We verify the changes of web pages that have geolocation per-

missions because users may want to revoke the granted permissions
if they do not prefer the changed web pages or the web pages no
longer contain location-based content. For this goal, we need a
method to effectively identify the differences between the old and
current versions of web pages.

We use a context triggered piecewise hash algorithm [19], also
known as a fuzzy hash algorithm, to verify changes. This algorithm
divides a document into blocks based on triggers, computes hash
values of each block, and uses the list of hash values to compare
different documents. We use this algorithm to confirm changes by
comparing the old and current versions of a rendered web page.
For image files, we use their histogram values and file sizes for
composing hash values.

We explain the procedure to verify web page changes. When our
web browser visits a web page for the first time and a user allows the
web page to retrieve geolocation, the browser computes a hash value
of the web page and stores the hash value along with the current

geolocation in its DB. On subsequent visits, the browser additionally
opens the web page with the stored geolocation to compute a new
hash value of the web page. If the difference between the stored and
new hash values exceeds a threshold value, the browser may ask for
user permissions again.

When computing the hash value of a web page, our web browser
ignores dynamic content embedded in the page (e.g., a web banner)
because it frequently changes regardless of whether the main text of
the web page changes. The browser identifies such dynamic content
by (1) visiting a web page several times in a short time period and
(2) inspecting changed content over the visits. Finally, the browser
computes hash values while excluding the dynamic content.

To lighten its burden, the web browser keeps a time-stamp of the
last visit to the web page and verifies changes only when the elapsed
time from the last visit is above a certain time.

5.2.2 Estimating location sensitivity
Our web browser estimates the location sensitivity of web pages

by varying geolocation within a predefined set of GPS coordinates
(§3.3) and verifying web page changes (§5.2.1). First, the web
browser extracts static content from a web page (i.e., excluding
banners). Second, the browser visits the web page several times
while using five different addresses that differ in street, city, state,
and country, respectively. Third, the browser verifies the changes
of the rendered web pages to estimate location sensitivity. Lastly,
the browser announces the estimated location sensitivity to a user
for recommending privacy configurations. If the browser fails to
estimate the location sensitivity because web pages have location-
independent content, the browser notifies random to a user. Visiting
a web page multiple times to enhance privacy is not a new idea.
[18, 27] have already considered similar techniques.

5.2.3 Concurrent inspection
Our web browser should visit a web page several times for inspec-

tion, so a user may need to wait a long time to check the inspection
result. We reduce the waiting time by concurrently inspecting a
web page. First, the browser simultaneously creates five WebView
activities for visiting a single web page with five different addresses
that differ in street, city, state, and country, respectively. Next, the
browser creates another WebView activity for visiting the web page
with one of the five addresses and extracts static content from the
two rendered web pages of the same address. Lastly, the browser
compares the static content with the five rendered web pages of
the different addresses, respectively, to estimate location sensitivity.
The overall inspection time is 1.8 times longer than page loading
time (details: §5.4.2).

5.3 Managing and Serving Geolocation
We explain how our web browser manages geolocation and serves

it to web pages. Our goal is to develop a portable and compatible
solution to the privacy problem of the Geolocation API. Our method,
overriding the Geolocation API, meets the goal because it modifies
neither Android platforms nor JavaScript engines.

5.3.1 Modifying the Geolocation API
To implement our scheme, we modify the behavior of the Ge-

olocation API by overriding its JavaScript methods. We choose
an open-source web browser for Android, Lighting Browser [25],
relying on WebView [2]. WebView supports JavaScript and allows
developers to inject arbitrary JavaScript codes into a loaded web
page; we use these features to override the Geolocation API (we
discuss possible limitations of this approach in §6.1.)

Figure 6 shows a code snippet to change the behavior of the

WebView webview = (WebView) findViewById(R.id.
webview);

Êwebview.getSettings().setJavaScriptEnabled(true);
webview.getSettings().setGeolocationEnabled(true)

;

Ëwebview.loadUrl("javascript:
navigator.geolocation.getCurrentPosition
= function(success) {

success({
Ì coords:{

latitude:"+dLatitude+",
longitude:"+dLongitude+",

},
timestamp:Date.now()

});
}"

);

Íwebview.loadUrl(URL);

Figure 6: Java code to override the getCurrentPosition()
method using WebView. It enables JavaScript and the Geoloca-
tion API (Ê), overrides getCurrentPosition() (Ë), changes
location information (Ì), and reloads the current web page (Í).

getCurrentPosition() method. First, the code enables both
JavaScript and the Geolocation API in WebView (Ê). Also, an appli-
cation must acquire Android location permissions (ACCESS_FINE_
LOCATION, ACCESS_COARSE_LOCATION) or both, and imple-
ment an onGeolocationPermissionsShowPrompt() call-
back method to use the Geolocation API [1]. The callback method
pops up a permission dialog (§5.3.3) when a browser visits web
pages that use the Geolocation API, but are not in the web browser’s
per-domain nor per-page permission DBs. Second, the code over-
rides the getCurrentPostion() method with a custom func-
tion (Ë). We use the loadUrl() method of WebView and the
javascript protocol for overriding, which enable arbitrary Java-
Script code execution within the scope of the current web page [22,
24]. Third, the code makes the custom function execute a suc-
cess callback function with degraded geolocation (dLatitude
and dLong-
itude) in accordance with a user’s choices (Ì). Lastly, the code
reloads the current web page to activate the injected JavaScript
code (Í). The revised code for the watchPosition() method
is similar.

5.3.2 Enhancing permission manager
We implement a custom geolocation permission manager to en-

hance Android’s default geolocation permission manager (Geoloc-
ationPermissions class). Figure 7a shows a simplified dia-
gram representing how the default geolocation permission manager
works. When a web site attempts to use the Geolocation API, the
manager first checks whether the permission state of the web site re-
sides in a DB file GeolocationPermissions.db (Ê). If a cor-
responding record exists, the manager returns geolocation according
to the record. Otherwise, the manager calls geolocationPermi-
ssionsShowPrompt() (Ë) which eventually calls onGeoloc-
ationPermissionsShowPrompt() to show a permission di-
alog to obtain a user’s decision (Ì). The manager receives the
decision (Í) and finally records it in the DB (Î).

We extend the preceding procedure by adding a custom geolo-
cation permission manager as shown in Figure 7b. Unlike the
default manager, the custom manager distinguishes per-page and

query

PermissionState()

GeolocationPermissions

GeolocationPermissions.db

record

PermissionState()

WebChromeClient

Permission

Dialog

geolocationPermissionsShowPrompt()

callback
onGeolocation

PermissionsShowPrompt()decision
�

�

�
�

� �

(a) Default manager.

query

PermissionState()

record

PermissionState()

GeolocationPermissions

GeolocationPermissions.db

WebChromeClient

Permission

Dialog

geolocationPermissionsShowPrompt()

callback

Do not

record

Custom

PermissionManager

Per-domain

DB

decision query recordempty show

always

onGeolocation

PermissionsShowPrompt()

Per-page

DB

�

�

� ���

�

��
�

(b) Custom manager.
Figure 7: Procedures of default and custom geolocation permission
managers.

per-domain permissions, and executes a code to change geolocation
(§5.3.1; §5.3.5). The default manager always calls the custom man-
ager when a web site tries to use the Geolocation API because we
record no data in the GeolocationPermissions.db.

5.3.3 Designing permission dialog
We use onGeolocationPermissionsShowPrompt() to

design a new permission dialog (Figure 8), allowing us to intercept
and customize the dialog for requesting geolocation permissions [1].
First, the dialogs show whether a user currently uses per-page (Fig-
ure 8a) or per-domain (Figure 8b) permission models (Ê). The
user can choose one of the permission models in browser settings.
Second, they show whether a current web page attempts to use
getCurrentPosition() or watchPosition() (Ë). This
information is helpful for the user because conventional geolocation
dialogs do not distinguish the two different methods. Third, the
dialog of the per-page permission model (Figure 8a) displays the
estimated location sensitivity of the web page (Ì) when the user
touches an “Inspect web page” button. The user may refer the result
when choosing privacy settings. In contrast, the dialog of the per-
domain permission model (Figure 8b) does not have such a button
because our scheme does not verify the changes of a domain’s con-
tent (§5.3.4) Fourth, the dialogs allow the user to choose accuracy
options: pinpoint, city, state, country, and random (Í). If the user
selects the random, the geolocation becomes one of well-known
cities (e.g., New York, London, or Paris). Lastly, the dialogs allow
the user to either temporarily or permanently grant permissions to
the web page, or deny providing any geolocation (Î).

5.3.4 Managing permission DBs
Our web browser has two permission DBs: a per-page permission

DB and a per-domain permission DB. The per-page DB consists of
(1) the URL of a web page, (2) whether a user allows or denies the
web page to access geolocation, (3) degree of location accuracy the
user grants to the web page, (4) the fuzzy hash of the web page for
change verification, (5) the geolocation when computing the fuzzy
hash, and (6) the (Unix) time when the web browser has visited the

�

�

�

�

�

(a) Per-page, position, and in-
spected.

(b) Per-domain, tracking, and
not yet inspected.

Figure 8: Examples of the proposed permission dialogs.

web page lastly to reduce the number of repeated verifications of
web page changes.

The per-domain DB is similar to the per-page DB except that it
maintains neither fuzzy hash values nor the timestamp of the last
visit because we cannot verify changes of all web pages under a
domain. To verify whether a domain’s content changes, we must
compute the fuzzy hash values of all web pages in it. However, this
computation has two problems: (1) we cannot enumerate all the web
pages under the domain and (2) some of the web pages may change
frequently. Moreover, granting permissions to a domain implies that
a user trusts all web pages of the domain. Consequently, verifying
all web pages under a domain is less meaningful.

Lastly, we must solve a synchronization problem between the DBs
that occurs when users grant a geolocation permission to a domain
whose web pages have already obtained geolocation permissions.
To solve this problem, we remove permissions granted to web pages
from the per-page DB when their domain obtains a permission.

5.3.5 Decreasing geolocation accuracy
According to a user’s choices, our web browser decreases the

accuracy of geolocation retrieved from an Android platform. A
naïve method to decrease the geolocation accuracy is to adjust GPS
coordinates [15], but this approach may lead to address information
being wrong. For example, the adjustment can virtually locate a
user in a different city, so if the web page that the user is on relies on
city-level geolocation, the user receives meaningless information.

Address-aware geolocation manipulation. We propose an add-
ress-aware method that cleverly decreases geolocation accuracy, by
altering postal address information instead of GPS coordinates. We
use the Google Geocoding API [12] that translates GPS coordinates
into the corresponding address information and vice versa.

We explain the procedures of the address-aware method with the
following conditions: (1) the current GPS coordinates of a device
are latitude 40.71751 and longitude -74.00348; and (2) our web
browser wants to provide city-level geolocation to a web page. First,
the web browser attempts to translate the GPS coordinates into the
corresponding address information by requesting http://maps.
googleapis.com/maps/api/geocode/json?latlng=
40.71751,-74.00348&sensor=true. When the Google
Geocoding API succeeds to process the request, the browser receives
a JSON file with estimated geolocation, and extracts detailed address

information from the JSON file, e.g., “359 Broadway, New York,
NY 10007, USA” stored in the formatted_address field.

Next, the web browser truncates the street information and the zip
code of the detailed address information, and obtains the correspond-
ing GPS coordinates by requesting http://maps.googleapis.
com/maps/api/geocode/json?address=New+York,
+NY,+USA&sensor=true. When the Google Geocoding API
successfully processes the request, the web browser receives a JSON
file that includes GPS coordinates, such as latitude 40.71435 and
longitude -74.00597, which point to the center of New York City.
Lastly, the web browser provides the degraded GPS coordinates to
the web page instead of the precise GPS coordinates. As a result, by
using the proposed method, users can hide their detailed geolocation
while assuring city-level accuracy.

Address caching. Using the Google Geocoding API for manipu-
lating address information has unavoidable network overhead: our
web browser should interact with the Google server whenever it vis-
its web pages that demand geolocation. To solve this problem, we
use an address caching method. Our web browser caches pinpoint-,
city-, state-, and country-level GPS coordinates obtained by the
address-aware geolocation manipulation in a DB. When a web page
granted either city-, state-, or country-level permissions attempts to
access geolocation while our browser’s current GPS coordinates are
close to some of the cached pinpoint GPS coordinates, the browser
uses the corresponding cached information of allowed accuracy. If
the browser’s current location is not close to any of the cached GPS
coordinates, it performs the address-aware geolocation manipulation
and updates the DB. We thereby minimize the network overhead
of using the Google Geocoding API. A number of studies identify
that a user’s location history does not suddenly change [26, 28], so
address caching is effective.

5.3.6 Suppressing the overflow of permission dialogs
A per-page permission model has a problem: this model can

pop up too many permission dialogs when our web browser visits
a web site that has many web pages using the Geolocation API.
To suppress the overflow of permission dialogs, our web browser
automatically applies a per-domain permission model to a web site
that pops up per-page permission dialogs too frequently.

5.4 Evaluation
We evaluate our scheme in terms of (1) accuracy, (2) time over-

head of the location sensitivity estimation, and (3) overall storage
overhead. For the evaluation, we use Galaxy S III and choose 200
web pages among the collected 1196 web pages that are in English
and access the geolocation without user interaction.

5.4.1 Accuracy
We verify how accurately our scheme estimates location sensitiv-

ity of the selected web pages by comparing the results with manual
inspection. The proposed scheme correctly estimates the location
sensitivity of 93.5% of the web pages. We further analyze the failed
estimations and confirm that the failures are due to web pages that
(1) store the obtained geolocation in cookies and retrieve them in
future (4.5%), (2) change their content according to both time and
geolocation (1.5%), and (3) use IP addresses to inspect locations
while ignoring the geolocation that our web browser provides (0.5%).
To access the geolocation information stored on such web pages,
the proposed scheme may need to manipulate cookies, analyze web
page semantics, or cloak IP addresses, respectively.

5.4.2 Time overhead
We measure how much time our scheme spends to inspect location

0.0

0.5

1.0

1.5

2.0

2.5

m
a

n
ta

.c
o

m

to
y

s
ru

s
.c

o
m

re
d

b
o

x
.c

o
m

s
ta

rb
u

c
k

s
.c

o
m

m
.s

e
p

h
o

ra
.c

o
m

g
n

c
.c

o
m

jo
a

n
n

.c
o

m

a
rt

o
fm

a
n

li
n

e
s

s
.c

o
m

a
m

c
th

e
a

tr
e

s
.c

o
m

u
ta

h
.g

o
v

a
c

e
h

a
rd

w
a

re
.c

o
m

ti
c

k
e

tf
ly

.c
o

m

m
.a

c
a

d
e

m
y

.c
o

m

c
u

lt
u

re
m

a
p

.c
o

m

s
o

n
ic

d
ri

v
e

in
.c

o
m

m
.t

u
m

i.
c

o
m

7
-e

le
v

e
n

.c
o

m

tg
if

ri
d

a
y

s
.c

o
m

p
a

k
a

d
tr

a
d

e
r.

c
o

m

a
tb

.c
o

mN
o

rm
a

li
z
e

d
 i
n

s
p

e
c

ti
o

n
 t

im
e

Figure 9: Inspection time to estimate location sensitivity normalized
to page loading time.

0.0

0.2

0.4

0.6

0.8

1.0

m
a
n

ta
.c

o
m

to
y
s

ru
s

.c
o

m

re
d

b
o

x
.c

o
m

s
ta

rb
u

c
k
s

.c
o

m

m
.s

e
p

h
o

ra
.c

o
m

g
n

c
.c

o
m

jo
a
n

n
.c

o
m

a
rt

o
fm

a
n

li
n

e
s

s
.c

o
m

a
m

c
th

e
a
tr

e
s
.c

o
m

u
ta

h
.g

o
v

a
c

e
h

a
rd

w
a

re
.c

o
m

ti
c
k

e
tf

ly
.c

o
m

m
.a

c
a
d

e
m

y
.c

o
m

c
u

lt
u

re
m

a
p

.c
o

m

s
o

n
ic

d
ri

v
e
in

.c
o

m

m
.t

u
m

i.
c

o
m

7
-e

le
v
e
n

.c
o

m

tg
if

ri
d

a
y
s
.c

o
m

p
a
k
a

d
tr

a
d

e
r.

c
o

m

a
tb

.c
o

m

P
o

rt
io

n
 o

f
in

s
p

e
c

ti
o

n
 t

im
e

Fetching Rendering Processing

Figure 10: Portion of inspection time.

sensitivity of the selected web pages, which is performed when a
user touches an “Inspect web page” button (§5.3.3). Measuring the
time overhead, however, demands much time so that we choose
20 web pages out of the selected 200 web pages highly ranked in
Alexa Top Sites. Figure 9 shows inspection time to estimate location
sensitivity of the 20 web pages normalized to page loading time that
consists of fetching and rendering time. On average, the inspection
time is 1.8 times longer than the page loading time. Although the
time overhead is high, it is tolerable because location-sensitivity
inspection would not be frequently performed.

We also measure the processing time that our algorithm spends
to estimate location sensitivity (§5.2.3). On average, the processing
time only takes ∼27% of the overall inspection time (Figure 10), so
the computational overhead of our scheme is acceptable.

5.4.3 Storage overhead
Lastly, we estimate the storage overhead of our scheme. We

first check how much storage is necessary to store the per-page
information of the 200 web pages in the per-page permission DB:
the average size of each record is ∼126 B. Next, we check how much
storage is necessary to store address caching information consisting
of pinpoint-, city-, state-, and country-level GPS coordinates in a
DB. We define an eight-byte field for storing a pair of latitude and
longitude values, so the size of each record is 32 B. For example, if
our web browser manages 10,000 per-page records and caches up to
10,000 address caching records, storage overhead is only ∼1.5 MB.
Therefore, we conclude that our scheme’s storage overhead is low.

6. DISCUSSION

6.1 Limitations
We discuss some limitations of the proposed scheme. First, our

web browser cannot estimate the location sensitivity of web pages
that demand high user interaction (e.g., button clicks or search key-
words typings). However, this limitation is less important because
such explicit user interaction reminds users that the web sites try
to access their geolocation. Users who value their privacy may
re-determine whether to grant their geolocation to the web sites.

Second, we cannot apply the proposed scheme to web browsers
that disallow JavaScript overriding for security reasons because the
proposed scheme should replace the getCurrentPosition()
and watchPosition() methods. If web browser developers
accept the proposed scheme and directly modify their web browsers,
we can eliminate this limitation.

Third, web sites that recognize geolocation inspection may pro-
vide fake web pages to deceive our web browser. Our browser visits
a web page several times with various geolocations, so web sites can
identify whether the browser inspects their web pages when they
compare consecutive HTTP requests. However, this identification
can be a huge burden on the web sites, especially when they have a
large number of concurrent users. Therefore, we presume that web
sites are unwilling to identify our web browser.

Lastly, web sites that only use IP-based geolocation can ignore
our scheme. However, a recent study [4] has identified that IP-based
geolocation fails when an IP address belongs to cellular networks.
For example, the study found that mobile devices hundreds of miles
apart can share the same IP address space. Therefore, we anticipate
that web sites would use the Geolocation API to obtain correct
geolocation instead of using IP-based geolocation.

6.2 Suggestions
We summarize our suggestions to mitigate the privacy problems

of the Geolocation API. First, we suggest that the Geolocation API
has to allow web sites to control the accuracy of the geolocation
that they demand. If the Geolocation API provides accuracy options
(e.g., pinpoint, city, state, and country) and returns postal address
instead of GPS coordinates, web sites can choose one of the op-
tions according to their requirements while eliminating geocoding
costs. This improvement mitigates privacy threats while reducing
computational and communication overhead of the web sites (§3.4).

Next, we recommend that the Geolocation API needs to employ
per-method permission models for separating positioning and track-
ing because tracking may cause more serious privacy problems than
positioning.

Lastly, we propose that the Geolocation API needs to allow web
sites to request permissions for either domains or pages. Some web
sites serving maps (e.g., Google Maps or Bing Maps) surely demand
per-domain permissions because most of their web pages use the
Geolocation API. However, other web sites such as shopping mall
sites may demand per-page permissions because most of their web
pages do not use the Geolocation API.

7. RELATED WORK
Location privacy. Several researchers have proposed various

methods to preserve location privacy, which can be used to enhance
the location privacy of our scheme. Gruteser and Grunwald [13]
establish the concepts of k-anonymity and a trusted-anonymization
server in LBSs. Instead of each user’s exact GPS coordinates, the
server computes a cloaking area including k different users and de-
mands LBSs for the area. Other researchers [7, 23, 31] also consider
personalized cloaking areas while assuring k-anonymity.

The k-anonymity-based methods have an important limitation:
their cloaking area may contain meaningful locations (e.g., a com-
pany, a hospital, and a school), which implies that users are at the
locations with a high probability. To solve this problem, Bamba
et al. [5] propose an l-diversity-based method which enlarges a
cloaking area until the area includes l different locations, and Lee et
al. [20] propose a location-semantics-based method.

Lastly, researchers propose a client-based method to preserve
location privacy without a trusted server. Yiu et al. [32] allow
users to utilize fake locations instead of their precise locations when
computing cloaking areas. Ghinita et al. [8] use a private information
retrieval (PIR) protocol that allows users to retrieve records from a
DB without revealing what records they request. Peer-to-peer-based
methods [9, 16] also exist.

Geolocation inference attack. Jia et al. [17] propose an attack
revealing the geolocation of a web browser without a user permis-
sion. They exploit a cache-timing attack [6] to recognize what
geolocation-dependent resources are stored in the browser cache.

8. CONCLUSION
In this paper, we considered the privacy problems of the HTML5

Geolocation API due to its lack of fine-grained permission and
location models. We detected vulnerable web browsers and over-
privileged web sites that violate the location privacy of users by con-
ducing case studies. We also proposed a novel scheme to enhance
the privacy of using the Geolocation API by supporting fine-grained
permission and location models, and by inspecting the location
sensitivity of each web page.

In future, we will develop a cloud service to effectively solve
the explored problems. We anticipate that the cloud service can
minimize inspection overhead by reducing the number of redundant
page inspections and can maximize the quality of location sensitivity
estimations by using crowdsourcing.

9. REFERENCES
[1] Android Developers. WebChromeClient.

http://developer.android.com/reference/
android/webkit/WebChromeClient.html.

[2] Android Developers. WebView.
http://developer.android.com/reference/
android/webkit/WebView.html.

[3] Apple. UIWebView class reference.
https://developer.apple.com/library/ios/
documentation/uikit/reference/UIWebView_
Class/Reference/Reference.html.

[4] M. Balakrishnan, I. Mohomed, and V. Ramasubramanian.
Where’s that phone?: geolocating IP addresses on 3G
networks. In IMC, 2009.

[5] B. Bamba, L. Liu, P. Pesti, and T. Wang. Supporting
anonymous location queries in mobile environments with
PrivacyGrid. In WWW, 2008.

[6] E. W. Felten and M. A. Schneider. Timing attacks on web
privacy. In CCS, 2000.

[7] B. Gedik and L. Liu. Location privacy in mobile systems: A
personalized anonymization model. In ICDCS, 2005.

[8] G. Ghinita, P. Kalnis, A. Khoshgozaran, C. Shahabi, and K.-L.
Tan. Private queries in location based services: Anonymizers
are not necessary. In SIGMOD, 2008.

[9] G. Ghinita, P. Kalnis, and S. Skiadopoulos. PRIVE:
Anonymous location-based queries in distributed mobile
systems. In WWW, 2007.

[10] globalogiq.com. HTML code search engine - search within
HTML source and HTTP headers.
http://globalogiq.com/htmlcodesearch.htm.

[11] Google. Improve your location’s accuracy - maps for mobile
help. https://support.google.com/gmm/
answer/3144282?hl=en&ref_topic=3137371.

[12] Google Developers. Google Geocoding API - Google Maps
API web services. https://developers.google.
com/maps/documentation/geocoding.

[13] M. Gruteser and D. Grunwald. Anonymous usage of
location-based services through spatial and temporal cloaking.
In MobiSys, 2003.

[14] A. T. Holdener. HTML5 Geolocation. O’Reilly Media, Inc.,
2011.

[15] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall.
“these aren’t the droids you’re looking for”: Retrofitting
Android to protect data from imperious applications. In CCS,
2011.

[16] H. Hu and J. Xu. Non-exposure location anonymity. In ICDE,
2009.

[17] Y. Jia, X. Dong, Z. Liang, and P. Saxena. I know where you’ve
been: Geo-inference attacks via the browser cache. In W2SP,
2014.

[18] J. Jung, A. Sheth, B. Greenstein, D. Wetherall, G. Maganis,
and T. Kohno. Privacy oracle: a system for finding application
leaks with black box differential testing. In CCS, 2008.

[19] J. Kornblum. Identifying almost identical files using context
triggered piecewise hashing. Digital Investigation, 3:91–97,
2006.

[20] B. Lee, J. Oh, H. Yu, and J. Kim. Protecting location privacy
using location semantics. In KDD, 2011.

[21] H. Liu, H. Darabi, P. Banerjee, and J. Liu. Survey of wireless
indoor positioning techniques and systems. Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on, 37(6):1067–1080, 2007.

[22] T. Luo, H. Hao, W. Du, Y. Wang, and H. Yin. Attacks on
WebView in the Android system. In ACSAC, 2011.

[23] M. F. Mokbel, C.-Y. Chow, and W. G. Aref. The new Casper:
Query processing for location services without compromising
privacy. In VLDB, 2006.

[24] M. Neugschwandtner, M. Lindorfer, and C. Platzer. A view to
a kill: WebView exploitation. In LEET, 2013.

[25] A. Restaino. Lightning browser. https:
//github.com/anthonycr/Lightning-Browser.

[26] O. Riva, C. Qin, K. Strauss, and D. Lymberopoulos.
Progressive authentication: deciding when to authenticate on
mobile phones. In USENIX Security, 2012.

[27] U. Shankar and C. Karlof. Doppelganger: Better browser
privacy without the bother. In CCS, 2006.

[28] E. Shi, Y. Niu, M. Jakobsson, and R. Chow. Implicit
authentication through learning user behavior. In ISC, 2010.

[29] W3C. Geolocation API specification.
http://www.w3.org/TR/geolocation-API.

[30] W3Schools. HTML5 geolocation. http://www.
w3schools.com/html/html5_geolocation.asp.

[31] T. Xu and Y. Cai. Feeling-based location privacy protection
for location-based services. In CCS, 2009.

[32] M. L. Yiu, C. S. Jensen, X. Huang, and H. Lu. SpaceTwist:
Managing the trade-offs among location privacy, query
performance, and query accuracy in mobile services. In ICDE,
2008.

