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We, If not all, benefit from LLMs
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Canwe use LLM in a confidential manner?

* Currently, our LLM usage relies on others without full control of
our data.
* Software (or service) to train and use LLMs doesn’t belong to us.
* Hardware to run the software with models as well.

(securely) self-host or
on-prem everything?

del

* https://help.ope naiWge-for-consumer-services-faq




LLM software stack is untrusted due to
complexity and dependenc
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Inevitable hardware outsourcing due to
massive computing power demand

Training Memory Requirements

The following table outlines the approximate memory requirements for training Llama 3.1

models using different techniques:

Model Size Full Fine-tuning LoRA  Q-LoRA

8B 60 GB 16GB 6GB
70B 500 GB 160GB 48GB
405B 3.25TB 950 GB 250 GB

>41 NVIDIA H100 GPUs

Note: These are estimated values and may vary based on specific implementation details and

optimizations.

* P,Schmid et al., “Llama 3.1 - 405B, 70B & 8B with multilinguality and long context, ” https://h ingf /blog/llama31, July 2024


https://huggingface.co/blog/llama31

What about sandbox + confidential cloud?

e Sandbox can confine untrusted software’s behaviors
* System call filter, IP packet filter, ...

* Confidential computingin the cloud prevents providers from
accessing and affecting computation

* Memory encryption and integrity, remote attestation, ...
* Best of both worlds. Problem solved




HW resource sharing - side/covert channels

* Existing techniques let adversary and
victim share (some) HW resources. CPU
* CPU core and cache
* Memory controller and DRAM
 PCle root complex and peripherals...

* Adversary can modulate data onto Complex |
outgoing traffic by affecting its :
performance. I } C’ [ NIC




Host interconnect congestion does matter
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* S. Agarwal et al, “Understanding host interconnect congestion,” ACM HotNets 2022.



Rethink sandbox boundary: Physical host

* Step back from hardware resource sharing
* Draw the sandbox boundary around a physical host
 Each tenant solely owns a host.

* Practical use case: Large-scale computation for LLM and others
* Some tenants even require multiple hosts. No need to share resources.



|OValve: /0O sandbox with physical isolation

 Sandbox boundary: physical host to run untrusted software

* |/O monitor: Physically separated HW to confine the host’s every
network I/0 activity

* Congestion-free memory transfer: The physical host and I/0
monitor share nothing but minimal facilities to relay data.

* Traffic regularization: uniformize and encrypt every outgoing
message
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Congestion-free memory transfer
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Data processing unit (DPU) as |/O monitor

* Powerful single-board computer at PCle

* General purpose computation: 10s of Arm cores, NVIDIABlueField-3 DPU
10s of GBs of DRAM, NVMe SSD, ... oo Tz

* Network acceleration: several 100s of Gbit/s i
RDMA/InfiniBand, line-rate encryption, Regex, ... =

* Modern datacenters already feature DPUs. | memmmmm—.
us/enterprise/networking/bluefield3/
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https://marketplace.nvidia.com/en-us/enterprise/networking/bluefield3/
https://marketplace.nvidia.com/en-us/enterprise/networking/bluefield3/
https://marketplace.nvidia.com/en-us/enterprise/networking/bluefield3/

Three-stage unidirectional data transfer

* |OValve DPUs repetitively perform the following operations:

Host1 Host2
U DPU1 ﬁ DPU2
1. Pull 3. Push

2. Push



Pull data from host to DPU

* Periodically poll the host’s send ring buffer

* Copy fixed-size data from host to DPU if
* The host buffer has a new data item.
 The DPU buffer has an empty slot for it.

* Use DPU’s DMA engine for both operations,
bypassing the CPU

Puller

Adapter €® Software
send/
)
Host1
DPU1
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Push data to remote DPU

len(pkt)

DPUI DPU2

fRegularizer e :
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* Periodically poll the peer DPU’s ring buffer

* Transfer fixed-size real or fake data to the peer
* Realone ifit has a new data item and the peer has an empty slot
* Fake one ifit has no data to send orthe peer’s buffer is full

* Use one-sided RDMA READ/WRITE to bypass the peer’s CPU
* Encrypt RDMA over UDP (RoCEv2) with IPSec HW accelerator




Push data from DPU to host

* Periodically poll the host ring buffer

* Copy fixed-size data from DPU to host if
* The DPU buffer has a new data item.
* The host buffer has an empty slot for it.

Software <+ Adapter

KI‘GCV

Host2 ?

DPU2
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Combined view of data exchange b/w hosts
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Evaluation setup

* Two nodes featuring

* Two Intel Xeon Silver 4510 CPUs (24 cores at 2.4
GHz)

* 256 GiB of RAM
* 1 TB of NVMe SSD

+ NVIDIA BlueField-3 DPU with two 200 Gbit/s ports I &
» NVIDIA TESLA P40 GPU (24 GiB of RAM)

e Connected with a 100 Gbit/s cable
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Evaluation: Latency and throughput

Latency
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Evaluation: Collective communication
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* Overhead is inversely proportional to message size.
* Small message: 60.9%-6.1x
* Large message: 18.7%-39.1%

* For small ones, our fixed-size messages mostly filled with
dummies.
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Evaluation: Real-world applications

Llama 3 fine tuning
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Llama 3 (8B) batch inference
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Takeaway: Let’s rethink sandbox boundary
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