
IOValve: Leakage-Free I/O Sandbox for Large-Scale Untrusted
Data Processing

Sangho Lee
Microsoft Research
Redmond, WA, USA

Jules Drean∗
Massachusetts Institute of Technology

Cambridge, MA, USA

Yue Tan∗
Princeton University
Princeton, NJ, USA

Marcus Peinado
Microsoft Research
Redmond, WA, USA

Abstract

The widespread adoption of Large Language Models (LLMs) is driv-
ing the rapidly growing demand for large-scale computations like
training and fine-tuning models. In many areas, the confidentiality
of the underlying data is of critical importance to their corporate
or government owners. However, securing data in large-scale com-
putations is challenging. First, its demand for enormous hardware
resources typically requires outsourcing (e.g., to the public cloud).
Second, the large and rapidly evolving software stack used in LLM
training in conjunction with a growing incidence of supply chain
attacks and software vulnerabilities makes it all but impossible
for data owners to establish trust in the code that processes their
highly sensitive data. Confidential computing and sandboxing are
promising techniques for solving these problems. However, existing
sandboxes do not address covert channels which limits their ability
to protect confidential data.

This paper proposes IOValve, a novel I/O sandbox for large-
scale computations on confidential data. IOValve places sandbox
enforcement on a programmable network device that is physically
isolated from the processor hardware running the untrusted soft-
ware stack. This construction allows IOValve to sidestep the mul-
titude of side channels due to visible or hidden resource sharing.
IOValve interposes on all network I/O of the sandbox and only
transmits encrypted and regularized network traffic in order to pre-
vent information leakage over the network. Our evaluation shows
that IOValve has marginal performance overhead and supports
real-world applications like LLM fine-tuning and batch inference,
and molecular simulation.

CCS Concepts

• Security and privacy→ Side-channel analysis and counter-

measures; Trusted computing.

Keywords

Sandbox; Covert channel; Programmable network device
∗Part of this work was done while these authors were interns at Microsoft Research.
Jules Drean is now at Tinfoil. Yue Tan is now at Google.

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.
CCS ’25, Taipei, Taiwan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1525-9/2025/10
https://doi.org/10.1145/3719027.3765121

ACM Reference Format:

Sangho Lee, Jules Drean, Yue Tan, and Marcus Peinado. 2025. IOValve:
Leakage-Free I/O Sandbox for Large-Scale Untrusted Data Processing . In
Proceedings of the 2025 ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS ’25), October 13–17, 2025, Taipei, Taiwan. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3719027.3765121

1 Introduction

Large-scale computations on confidential data in the cloud enable
the processing of vast, sensitive datasets with power and efficiency
that would be challenging and costly to achieve locally. This ca-
pability is pivotal in training and fine-tuning of Large Language
Models (LLMs) and other machine learning and scientific computa-
tion tasks, where immense computational resources are necessary
for handling and deriving meaningful insights from voluminous
data. For example, Meta used two GPU clusters (24,576 NVIDIA
H100 GPUs in each) to train their Llama 3 models [64]. Full fine-
tuning of Llama 3.1 405B needs 3.25 TB of GPU memory [106],
requiring more than 40 H100 GPUs.

Many potential cloud customers, such as governments, aerospace
companies, financial services, or defense contractors, view the con-
fidentiality of their sensitive data as business critical. This often
makes them hesitant to fully embrace cloud computations despite
their substantial benefits due to concerns over data breaches and
unauthorized access [30, 51].

Confidential computing has emerged as the main tool for exclud-
ing cloud providers from the Trusted Computing Base (TCB) of
their customers [13]. It places customers’ sensitive data and compu-
tations into enclaves or Confidential Virtual Machines (CVMs) [8,
13, 25, 71] which are protected by processor hardware from the
cloud provider’s hypervisor.

However, excluding the cloud provider from the customer’s TCB
solves only one aspect of the data confidentiality problem. The
software stack needed to support modern large-scale computations
has become so complex that users effectively have no basis for
trusting the code that processes their confidential data. In addition
to a standard operating system (e.g., Linux) and GPU drivers and
libraries (e.g., CUDA [84]), the distributed machine learning stack
includes GPU management and orchestration (e.g., NCCL [89]),
model parallelism tools (e.g., Alpa [113]), training libraries (e.g., Py-
Torch [117] and TensorFlow [114]), distributed training frameworks
(e.g., Ray [9], Horovod [115]), data pipeline tools, and tools for mon-
itoring and logging the training process. These components include
rapidly evolving open and closed source software from a multitude

https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://doi.org/10.1145/3719027.3765121
https://doi.org/10.1145/3719027.3765121

CCS ’25, October 13–17, 2025, Taipei, Taiwan Sangho Lee, Jules Drean, Yue Tan, and Marcus Peinado

of sources. In addition to the almost certain presence of vulnerabil-
ities in such a large TCB [59], supply chain attacks [5, 37, 41, 110]
are becoming more frequent with 633% year-over-year growth and
over 88,000 individual attack instances reported in 2022 [24].

Sandboxed systems have been proposed to address this problem
[3, 40, 47, 48, 74, 102, 135]. They run all code that accesses confi-
dential data in a sandbox and control information flows out of the
sandbox. This is effectively a coarse-grained form of Mandatory
Access Control (MAC) [14] or Information-Flow Control (IFC) [31]
and removes the code that processes the confidential data from the
data owner’s TCB. Several systems place the sandbox inside a TEE,
thus excluding both the cloud provider and the software stack from
the TCB [47, 48, 74].

In practice, the confidentiality guarantees of sandboxed systems
have been severely undermined by covert channels where adver-
sarial code inside the sandbox actively transmits information to
a listener on the outside. While several systems address storage
covert channels, timing covert channels are almost universally ex-
cluded from the threat model [48, 62, 121]. The intractability of
timing covert channels has persisted for decades [58] and has been
exacerbated by the flood of micro-architectural channels that have
been discovered in recent years [20, 130]. These high-bandwidth
channels effectively void all sandbox confidentiality guarantees.

The growing importance of large-scale computations presents
an opportunity to rethink the sandbox boundary. The idea is to
move away from the fine-grained setting in which covert chan-
nel mitigation is believed to be impossible [62, 133] and toward a
much coarser boundary around entire physical hosts whose only
connection to the untrusted outside world is a network wire. Elimi-
nating covert channels from the latter appears significantly more
tractable than doing so in a processor core. Large-scale computa-
tions are well suited for this purpose, as they require a set of entire
machines due to a high need for processing power and because
the communication pattern between these machines is generally
regular.

This paper presents IOValve, a system that supports large-scale
computations on confidential data while excluding both the cloud
provider and the data processing software from the TCB. Impor-
tantly, IOValve includes a sandbox construction that avoids and
mitigates covert channels, allowing it to protect data confidential-
ity. Furthermore, the IOValve sandbox can host unmodified data
processing platforms such as PyTorch.

The guiding principle behind IOValve’s sandbox design is to
make the sandbox interface as simple as possible and to facilitate
strong physical separation between the code inside the sandbox
and the code enforcing the sandbox. As a result, IOValve draws the
sandbox boundary at the network interface with send and receive
being the only two interfaces between the sandbox and the outside
world which are independent of any trusted or untrusted activities
inside the sandbox.

IOValve’s sandbox monitor interposes on all network traffic in
and out of the sandbox and applies deterministic policies to it. For
outbound traffic, the policies can be a combination of encryption
(with the user’s key), block, and regularization of both volume and
timing. This allows IOValve to sandbox collections of entire bare
metal machines on which users can run existing software. For

example, a corporate cloud customer may rent one or more GPU-
equipped bare metal computers in the cloud to fine-tune an LLM
with business-sensitive data. Confidentiality is ensured by the sand-
box monitor encrypting and regularizing (or shaping) all outbound
network traffic such that untrusted code inside the sandbox cannot
explicitly or implicitly exfiltrate sensitive data.

Our prototype places the sandbox monitor on a Data Processing
Unit (DPU) [88] which is effectively a separate computer equipped
with a network interface and connected to the main computer (i.e.,
the host) via the PCIe bus. We carefully restrict the DPU’s DMA and
any other PCIe bus accesses to prevent the host from congesting it.
The DPU is the only networking device of the host.

The sandbox monitor running on the DPU is the user’s software
TCB. Remote users can provide their own monitor code and use
attestation and authenticated boot to ensure that it runs on the
DPU. The user can now remotely boot the host with a system
image transferred through the DPU.

At this point, the user’s sandbox monitor can control (i.e., block
or encrypt) all network traffic generated by the host. This leaves
covert channels as the only way to exfiltrate data from the host.
By design, the only possible covert channel is the network wire.
IOValve seeks to eliminate this network covert channel by regu-
larizing any traffic it sends on the network wire on behalf of the
host. That is, the sandbox monitor will send encrypted packets of
predefined sizes with a fixed time interval irrespective of the ac-
tions and network requests of the host (with dummy data if needed).
Thus, a covert channel listener (i.e., a cloud network operator) on
the network can only observe periodic random bitstrings which
is immune to traffic analysis. This constant or fixed shaping is a
well-known concept (e.g., BuFLO [35]). We make it practical with
efficient software design and careful hardware usage.

We have implemented IOValve on x86-based hosts equipped
with GPUs and NVIDIA BlueField DPUs. Our evaluation includes
fine-tuning of Llama 3 8B and Llama 3 70B [34] where IOValve
increases their training time by 2.1%–4.1%. We also demonstrate
IOValve on batch inference with Llama 3 8B whose highest token
generation throughput is decreased by 1.4%. Additionally, IOValve
supports training a deep learning model for molecular dynamics
simulation with a time overhead of 3.4%–5.1%. It is worth noting
that IOValve supports these applications without modifying them.

In summary, this paper makes the following contributions.
• We present a novel coarse-grained sandbox architecture that
sidesteps traditional covert channels.
• We present a mechanism to block network-based covert
channels using a programmable networking device.
• We present application case studies on LLM fine-tuning, LLM
batch inference, and molecular simulation.

2 Background

In this section, we explain the background of IOValve.

2.1 Network Covert Channels

A covert channel is an undesired or unexpected channel that allows
the adversary to implicitly leak secrets [92]. Network covert chan-
nels specifically refer to channels that encode secrets into network

IOValve : Leakage-Free I/O Sandbox for Large-Scale Untrusted Data Processing CCS ’25, October 13–17, 2025, Taipei, Taiwan

CPU

iMC

PCIe
Root

PCIe
Switch

CPU

iMC

RNIC

DRAM

DRAM

DPU

PCIe

GPU
Host

DMA

Mesh

interconnect

NVMe

PCIe
Switch

Fig. 1: Simplified host-DPU block diagram (iMC: Integrated

Memory Controller, RNIC: RDMA-capable NIC).

traffic. There are two types of network covert channels: timing and
storage channels.
Covert timing channel. The covert timing channel leaks secrets
by modulating resource usage or network traffic such that an ex-
ternal party can recognize the difference based on factors such as
response time or throughput. For example, the adversary can adjust
the inter-packet delay of their network traffic to let the malicious
network operator observe the difference. If the adversary cannot
generate arbitrary network traffic due to IFC- or MAC-like strict
security enforcement, they will try to slow down or block others’
allowed network traffic by congesting shared hardware resources
like CPU and memory, which is still visible to the outside.
Covert storage channel. The covert storage channel leaks secrets
by embedding secrets into network traffic. For example, the adver-
sary can store secrets in unused fields of IP, TCP, or UDP headers.
Also, the adversary can simply adjust the packet size with padding.
Mitigating the storage channel is challenging because some systems
repurpose the unused fields (e.g., DDoS traceback [132]). Also, it is
difficult to know what the benign packet sizes are in advance.

2.2 Data Processing Unit (DPU)

A DPU or Infrastructure Processing Unit (IPU) is a programmable
hardware device that can control and manipulate the I/O (e.g., net-
work and storage) of a computing device. Amazon Nitro Card [7],
AMD Pensando [1], Intel IPU [53], Microsoft Azure Boost [78], and
NVIDIA BlueField [88] are well-known DPUs. Cloud providers of-
fload essential infrastructure security and management tasks from
CPUs to DPUs (e.g., packet encryption and encapsulation and health
monitoring), resulting in better and more predictable performance
for cloud tenants.

Fig. 1 is a block diagram of the host and DPUwith PCIe and DMA
interactions based on NVIDIA BlueField-3 [88]. The DPU consists
of a Remote DMA (RDMA)-capable NIC (RNIC) containing hard-
ware accelerators (e.g., for packet encryption and encapsulation),
a general-purpose (Arm) CPU, a PCIe switch, DRAM, and flash
storage. The RNIC, CPU, and switch are interconnected with each
other through a coherent mesh. The DPU can program its switch to

selectively expose its internal components to the host. For example,
the DPU can expose its RNIC to the host CPU to let them interact
directly through DMA and MMIO to behave like conventional NICs
or RNICs. On the other hand, the DPU can redirect any commands
or data from the host to its internal CPU for various operations,
including security checks and data processing, and then interact
with its RNIC on behalf of the host. IOValve leverages the latter
configuration to interpose on all I/O interactions of the host.

2.3 Collective Communication

Collective operations and communications enable distributed paral-
lel computing like scientific computing andML training. Distributed
parallel computing typically consists of the distribution of jobs and
data to each rank (a computation unit like a CPU core or a GPU
device), individual computation by each rank, and the collection
of the intermediate or final computation results of the ranks. Col-
lective communications realize all these steps with no or minimal
redundant data transfers. Three real-world applications that we run
IOValve with, Llama 3 fine-tuning and batch inference and molecu-
lar dynamics simulation (§6.4), leverage collective communications.
For example, according to our experiment, these applications use
the four collective operations provided by the NVIDIA Collective
Communications Library (NCCL) [89]: AllGather, AllReduce, Broad-
cast, and ReduceScatter. AllGather collects data from all ranks and
stores them on all ranks. AllReduce collects data from all ranks, com-
bines (or reduces) them using a specific operator, and distributes
the result to all ranks. Broadcast allows one rank to distribute data
to all other ranks. ReduceScatter is like AllReduce except that it
scatters some portions of the result to each rank.

The operations and payload sizes of collective communications
are almost uniform. Thus, the extra effort to regularize them (e.g.,
pad small packets, segment large packets, and adjust packet transmit
intervals) is marginal. This allows us to realize covert-channel-free
collective communications with moderate overhead (§6.3).

3 Model and Goal

In this section, we explain this paper’s threat model and goals.

3.1 Threat Model

IOValve’s focus is on protecting the confidentiality of the data own-
ers’ data. We exclude the availability and integrity of computation.
The core tenets of our threat model are:
Data owners do not trust the software processing their data.

As described in §1, the software stack for modern large-scale com-
putations is highly complex, resulting in a high potential for ex-
ploitable vulnerabilities and supply chain attacks [5, 41, 110].
Data owners do not trust any of the cloud provider’s soft-

ware. This is the core promise of most work on confidential cloud
computing [13, 107]. Going beyond that standard, our threat model
includes all software- and hardware-based side channels which are
software controllable and do not require physical access (e.g., most
microarchitectural side channels [73]). Furthermore, we cover any
attempt to use such side channels to build covert channels between
sandboxed untrusted data processing software and the cloud soft-
ware or any entity outside the cloud. Finally, the cloud provider’s

CCS ’25, October 13–17, 2025, Taipei, Taiwan Sangho Lee, Jules Drean, Yue Tan, and Marcus Peinado

software-controllable network infrastructure (e.g., routers, load
balancers, and switches) is also untrusted.
Data owners trust the cloud provider’s hardware and its phys-

ical security. This assumption is implicit in most of the literature
on confidential cloud computing based on TEEs, as a sufficiently
powerful hardware attack can break any TEE security guarantees
(e.g., voltage glitching [18, 23] or invasive hardware attacks such as
electron microscopy [26], passive voltage contrast [142], focused
ion beam editing [44], and electromagnetic pulse [118]).

However, our threat model excludes even simpler hardware at-
tacks such as tampering with the motherboard configuration. Why
is it reasonable to include all software attacks while excluding all
hardware attacks? Does this combination provide meaningful pro-
tection to data owners? To answer these questions, we observe that
the term ‘cloud provider’ is effectively a proxy for several indepen-
dent actors and analyze them individually: (a) the company that
controls the cloud, (b) its employees, (c) external hackers.

(a) The company: We consider large reputable corporations (e.g.,
Amazon, Microsoft, and Google). They have an overwhelming in-
centive to abide by the law and customer contracts. Violations
would risk catastrophic damage to their business due to loss of
customer trust, reputation damage and legal penalties. We do not
consider the company itself to be an attacker.

(b) Employees: Cloud companies employ thousands to tens of
thousands of software developers, administrators, and operations
personnel [28]. Many of these employees are insiders according to
definitions by CISA [27] and Mandiant [56]. Thousands of insider
attacks have been documented in government and industry [55, 60,
82, 119]. Our threat model covers this large attack surface.

Datacenter employees might attempt hardware attacks, but this
is mitigated by the small on-site workforce [94], physical security
(e.g., CCTV and armed guards) [100], and their limited reach—just
one facility versus the full cloud accessible to developers and ad-
mins.

(c) External hackers: Our model includes hackers who might
have ‘hacked’ into the cloud. They may try to launch software
attacks (which are covered by our threat model), but they cannot
run hardware attacks (because they require physical access).
Data owners trust IOValve. The IOValve firmware and soft-
ware are remotely attestable [83]. It does not receive and execute
any external code and commands—it only accepts the data owner’s
code and security policies for I/O sandboxing during provisioning
and uses them until it is reset. Since it is within the datacenter,
its physical security is guaranteed by the same means. Except for
crypto keys, its configuration is public.

3.2 Goal

We aim to achieve the following security goal:

The IOValve sandbox prevents untrusted software which
processes confidential data in the public cloud from exfil-
trating the data to untrusted entities.

The untrusted software includes data processing software, any
libraries it depends on, and the underlying system software like
the operating system and the hypervisor. An untrusted entity is

any remote entity outside the user’s IOValve sandbox to which the
user does not intend to disclose their confidential data. An example
could be a network switch on which a rogue cloud employee may
have installed traffic monitoring software. Exfiltration covers both
overt and covert information leakage. That is, IOValve prevents
the untrusted software from creating network connections to arbi-
trary untrusted entities and encrypts all legitimate network traffic
(e.g., to the user’s on-premises machines or between the IOValve
sandboxes). It also prevents the untrusted software from modulat-
ing legitimate network traffic in a way that is recognizable by the
untrusted entity.

4 Design

In this section, we explain the design of IOValve. IOValve ensures
confidential data processing without covert channels using a pro-
grammable network device (the IOValve DPU) that controls and
regularizes all I/O traffic of each computing node. We explain the
configuration needed for hardware-level security (§4.1), system pro-
visioning (§4.2), congestion avoidance (between host and DPU §4.3)
and inter-node (between DPUs §4.4) communication.

4.1 Hardware and System Configuration

IOValve requires the following configurations to ensure its secu-
rity. First, the IOValve DPU must be the sole network device of a
computing node to interpose on all network traffic. There should
be no other internal (e.g., PCIe or motherboard integrated) and
external (e.g., USB) NICs plugged into the node. We consider this
to be a physical attack which is out of this paper’s scope. Sec-
ond, the IOValve DPU must be able to ignore any administration
commands from the node which is untrusted. The administration
commands include DPU firmware flashing, hardware component
exposure, and network configuration. Many DPUs including the
BlueField DPU that IOValve relies on already support this security
feature [87] to deal with node compromise. Third, the IOValve DPU
must be able to (re-)provision the node. That is, the IOValve DPU
can reset the node at any time and reinstall its operating system
from scratch (e.g., through Preboot eXecution Environment (PXE)
network boot or boot storage emulation). It is worth noting that
IOValve does not require any hardware modification to ensure this
re-provisioning—we allow the IOValve DPU to control the node’s
Baseboard Management Controller (BMC) as AWS Nitro does [7].
Fourth, the IOValve DPU must be controlled by a single tenant to
avoid any potential co-tenant side-channel attacks.

4.2 Provisioning and Attestation

We describe how IOValve provisions the DPU and the host with the
help of attestation. IOValve relies on bare-metal provisioning with
attestation schemes for cloud nodes and Arm machines [12, 81].
Thus, instead of mentioning the details of provisioning mechanisms
here, we focus on our insight to leverage them (i.e., their network
boot and attestation) to realize two-level provisioning as follows.
DPU provisioning. IOValve provisions the DPU with a user-
provided image once it is turned on or power cycled. To this end,
we run a small Linux operating system (initramfs) on the DPU.
This small operating system runs an HTTPS server to receive a
user’s request, downloads an image to a separate partition, and

IOValve : Leakage-Free I/O Sandbox for Large-Scale Untrusted Data Processing CCS ’25, October 13–17, 2025, Taipei, Taiwan

resets itself to boot with the new image. This user-provided image
contains the DPU-side IOValve libraries.
DPU-driven host provisioning. Once the DPU has been provi-
sioned with the user-provided DPU image, it provisions the host (or
node) it is plugged into. It first receives a system image for the host
from the user (through an HTTPS server). This image contains data
processing software, all libraries it depends on, and the host-side
IOValve libraries. Second, it resets the host (e.g., through the BMC).
Lastly, it makes the host boot into the user-provided host image
(e.g., through PXE network boot or boot storage emulation).
Attestation and secret provisioning. IOValve provisions se-
cret keys to individual DPUs once it has remotely attested their
operating systems. For example, the BlueField DPU supports device
attestation based on the Security Protocols and DataModels (SPDM)
standard [83]. IOValve can leverage it to enable remote attestation.
IOValve uses the secret keys for two purposes. First, it assigns
unique secret keys to individual DPUs such that the user as well
as each DPU can distinguish the other. Second, it uses these keys
to establish secure channels between DPUs to enable inter-node
data processing and between the DPU and the user’s on-premises
machine to exchange confidential input data and processing results.
Security policy. IOValve enforces simple and strict security poli-
cies. First, IOValve blocks any unauthenticated or unencrypted
traffic at the DPU. That is, all ingress and egress traffic to and from
the node must be mutually authenticated and encrypted based on
the provisioned secret keys. In essence, IOValve blocks all network
traffic except for communications with the user’s on-premises back-
end and a set of partner nodes explicitly specified (by their provi-
sioned keys). Second, IOValve regularizes all inter-node (i.e., inter-
DPU) traffic (which will be explained in §4.3 and §4.4). Third, if the
user’s on-premises machine does not support individual IOValve
operations (e.g., due to a lack of DPU hardware), the DPU stages
all confidential input and output data in its storage first and then
delivers them to the node and the on-premises machines later, re-
spectively, to avoid any potential information leakage.

4.3 Congestion-Free Memory Transfer

We explain how IOValve realizes memory transfer without timing
channels due to host interconnect congestion [2]. In a comput-
ing system, many memory devices (e.g., DRAM and CPU cache)
can become the basis for covert timing channels because multiple
processors and peripherals can concurrently access them without
performance isolation. For example, assume that a legitimate pro-
cess is sending data from a communication buffer in DRAM to a
remote party through a NIC which will access DRAM via DMA.
Since a malicious process can also access DRAM, it can modulate
information onto the legitimate data transfer by affecting the NIC’s
DMA transfer rate through memory congestion (§6.2). IOValve’s
congestion-free memory transfer satisfies the following properties,
effectively mitigating the covert timing channel.
Spatial separation. IOValve spatially separates the communica-
tion buffer from the host CPU running untrusted code by placing it
in the DPU (Fig. 2). The untrusted process cannot physically access
the communication buffer, so it cannot intentionally introduce a
memory access delay. To ensure this spatial separation, IOValve
leverages the DPU memory with the following three hardware

DPU

Host

DPU

SoftwareAdapter AdapterSoftware

Host

send recv send recv

t

len(pkt)

Puller Pusher PusherPuller

Regularizer Regularizer

h
t h

t

h
t

t

h

h
t

h

t

h
t

h=t

Fig. 2: IOValve’s data transfer with congestion-free memory

transfer and traffic regularization.

configuration steps. First, it prevents the host CPU (i.e., its DMA
engine) from accessing DPU memory. Second, it prevents the NIC
from accessing host memory. Third, it prevents the host CPU from
accessing or congesting the link between the NIC and the DPU
memory. Since the host CPU cannot access DPU memory whereas
the NIC can only access DPU memory, IOValve requires a mecha-
nism to let them share data in a leakage-free manner.
Periodic data pull and push. IOValve ensures periodic data
pull and push between the host and DPU to prevent the host from
arbitrarily congesting data transfers. IOValve runs the puller and
pusher at the DPU which control the DPU’s DMA engine. First,
the puller and pusher periodically poll the metadata (i.e., tail and
head indexes) of send and receive ring buffers in the host through
DMA. If the host send buffer has a new data item and the DPU has
a memory buffer to store it, the puller transfers the data item from
the host send buffer to the DPU buffer (i.e., the puller is a consumer
of the host send buffer). On the other hand, if the DPU has received
a new data item from a peer DPU and the host receive buffer is
available, the pusher transfers the data item from the DPU buffer
to the host receive buffer (i.e., the pusher is a producer of the host
receive buffer). IOValve separates the host send and receive buffers
(i.e., they are unidirectional) and uses different DMA Submission
Queues (SQs) to access them. This allows IOValve to concurrently
run the puller and pusher without synchronization.

IOValve has the adapter in the host which allocates andmanages
the host send and receive ring buffers such that the puller and
pusher can access and update themwhile interacting with untrusted
software (as a compatibility layer §5). However, IOValve does not
trust the adapter and prevents it from sending any DMA commands
to the DPU. It is worth noting that the host might affect these
periodic data pulls and pushes because the host memory that they
are accessing can be under congestion (by a compromised adapter
or any other host programs). Fortunately, IOValve’s network traffic
is independent of this congestion as its NIC does not access the
host memory (§4.4).
Ring buffer lazy synchronization. IOValve shares host ring
buffers across the host and DPU and it is challenging to ensure their
consistency due to unpredictable memory ordering and nontrivial

CCS ’25, October 13–17, 2025, Taipei, Taiwan Sangho Lee, Jules Drean, Yue Tan, and Marcus Peinado

Algorithm 1 Enqueue data with lazy synchronization
1: 𝑚 ← metadata(𝐵, 𝑝)
2: 𝑚

′ ← duplicate(metadata(𝐵, 𝑐))
3: if𝑚

′
.𝑠𝑏 =𝑚

′
.𝑠𝑒 then

4: 𝑚.𝑡 ←𝑚
′
.𝑡 ⊲ synchronize metadata

5: if available(𝐵) then
6: 𝐵 [𝑚.ℎ] ← data
7: 𝑚.𝑠𝑏 ←𝑚.𝑠𝑏 + 1
8: 𝑚.ℎ ←𝑚.ℎ + 1 mod capacity(𝐵)
9: 𝑚.𝑠𝑒 ←𝑚.𝑠𝑏

transfer delay. If this was sharing of a ring buffer between host
processes, IOValve could easily ensure consistency by leveraging
CPU primitives like atomic operation, memory barrier, and mutex.
However, in IOValve, the host and DPU feature different CPU
architectures with different memory models (x86 and Arm) and
share ring buffers through PCIe and DMAs. Our DPU, NVIDIA
BlueField, provides a synchronization primitive called DOCA Sync
Event [90] but we decided not to use it because it is slow, and we
prefer a generic solution rather than a DPU-specific one.

IOValve solves this synchronization problem by allowing the
host and DPU to lazily synchronize their metadata with a pair of
sequence counters, inspired by sequential lock [116] and FaRM [33].
First, for each shared ring buffer (𝐵), IOValve respectively main-
tains metadata in the host and DPU as a producer (𝑝) or a consumer
(𝑐). Second, IOValve places sequence counters (𝑠𝑏 and 𝑠𝑒) at the
lowest and highest addresses within the metadata (𝑠𝑏 ← 0 and
𝑠𝑒 ← 0, initially). Third, IOValve ensures the host and DPU in-
crease 𝑠𝑏 before they update their metadata and do 𝑠𝑒 ← s𝑏 after
they have updated their metadata (e.g., with a memory barrier).
For instance, once the adapter enqueues a new data item into the
host send buffer based on the head index (ℎ) in its metadata, it
advances the head index (with a modular operation) while updating
the sequence counters as explained. Similarly, once the puller de-
queues a data item from the host send buffer based on its tail index
(𝑡), it advances the tail index while securing its metadata with the
sequence counters. Fourth, IOValve ensures the DPU sequentially
copies (from low to high memory addresses) the entire metadata
of the host (and vice versa) before it attempts to synchronize the
metadata (i.e., reflect a tail or head index advanced by the other
party). The DPU discards copied metadata if 𝑠𝑏 ≠ 𝑠𝑒 as this implies
that there has been a data race. Algorithm 1 and Algorithm 2 for-
malize these procedures. Since IOValve does not allow the host
to access the DPU memory, it allocates an extra buffer in the host
and pushes the DPU’s metadata to the buffer to let the host do lazy
synchronization.

It is worth noting that IOValve uses a pair of sequence coun-
ters rather than a single counter (and checks whether it is odd or
even [116]) to decrease the number of DMA commands which are
costly. Additionally, the untrusted host (i.e., a compromised adapter)
might ignore this lazy metadata synchronization to intentionally
introduce data inconsistency. However, this only results in integrity
or availability issues which are out of this paper’s scope.
Inter-buffer direct data transfer. IOValve directly copies data
items from host send and receive buffers (𝐵ℎ,𝑠 and 𝐵ℎ,𝑟) to DPU
send and receive buffers (𝐵𝑑,𝑠 and 𝐵𝑑,𝑟) and vice versa to avoid any

Algorithm 2 Dequeue data with lazy synchronization
1: 𝑚 ← metadata(𝐵, 𝑐)
2: 𝑚

′ ← duplicate(metadata(𝐵, 𝑝))
3: if𝑚

′
.𝑠𝑏 =𝑚

′
.𝑠𝑒 then

4: 𝑚.ℎ ←𝑚
′
.ℎ ⊲ synchronize metadata

5: if ¬empty(𝐵) then
6: data← 𝐵 [𝑚.𝑡]
7: 𝑚.𝑠𝑏 ←𝑚.𝑠𝑏 + 1
8: 𝑚.𝑡 ←𝑚.𝑡 + 1 mod capacity(𝐵)
9: 𝑚.𝑠𝑒 ←𝑚.𝑠𝑏

Algorithm 3 Inter-buffer data pull (local)
1: 𝑚 ← metadata(𝐵ℎ,𝑠 , 𝑐)
2: 𝑚

′ ← duplicate(metadata(𝐵ℎ,𝑠 , 𝑝))
3: if𝑚

′
.𝑠𝑏 =𝑚

′
.𝑠𝑒 then

4: 𝑚.ℎ ←𝑚
′
.ℎ ⊲ synchronize metadata

5: if ¬empty(𝐵ℎ,𝑠) ∧ available(𝐵𝑑,𝑠) then
6: 𝑛 ← metadata(𝐵𝑑,𝑠 , 𝑝)
7: 𝐵𝑑,𝑠 [𝑛.ℎ] ← 𝐵ℎ,𝑠 [𝑚.𝑡]
8: 𝑚.𝑠𝑏 ←𝑚.𝑠𝑏 + 1
9: 𝑚.𝑡 ←𝑚.𝑡 + 1 mod capacity(𝐵ℎ,𝑠)
10: 𝑚.𝑠𝑒 ←𝑚.𝑠𝑏

11: 𝑛.ℎ ← 𝑛.ℎ + 1 mod capacity(𝐵𝑑,𝑠)

redundant data copies and bypass the DPU CPU. More specifically,
its DPU-side enqueue and dequeue operations for the ring buffer
do not temporarily copy data items from and to another buffer with
the CPU’s memory copy instructions. Instead, IOValve calculates
source and destination memory addresses (one belongs to the host
memory whereas the other one belongs to the DPU memory) of a
data item based on head and tail indexes and issues a DMA com-
mand to trigger direct data transfer between them. Algorithm 3
and Algorithm 4 formalize these procedures (along with a dummy
remote transfer which will be explained in §4.4). Note that the DPU
send buffer (𝐵𝑑,𝑠)—that the puller stores the host’s data items to
send to a peer DPU—is not shared with the host and the peer DPU.
Thus, it does not require sequence counters and only needs CPU-
level memory ordering unlike host send and receive buffers and
DPU receive buffers.
Node-level buffer management. IOValve maintains two buffers
for each direction of a node pair regardless of the number of con-
nections that the host software has established. While multiple
connections between nodes can maximize data processing paral-
lelism, this would allow the untrusted host code to affect IOValve’s
data transfer interval (e.g., by dynamically adjusting the number
of connections during execution). It also increases the attack sur-
face of the transferer due to its complexity. To this end, IOValve
establishes only a single connection for each node pair and uses the
two single-producer single-consumer ring buffers (i.e., one for each
direction) for the node-level connection. The adapter at the host pro-
vides all other multiple connection support including maintaining
multiple buffers for individual connections and transferring their
data items into the node-level buffers in a synchronous manner.

IOValve : Leakage-Free I/O Sandbox for Large-Scale Untrusted Data Processing CCS ’25, October 13–17, 2025, Taipei, Taiwan

Algorithm 4 Inter-buffer data push (remote or local)
1: 𝑚 ← metadata(𝐵∗,𝑟 , 𝑝) ⊲ 𝐵∗,𝑟 = 𝐵𝑑,𝑟 (remote) or 𝐵ℎ,𝑟 (local)
2: 𝑚

′ ← duplicate(metadata(𝐵∗,𝑟 , 𝑐))
3: if𝑚

′
.𝑠𝑏 =𝑚

′
.𝑠𝑒 then

4: 𝑚.𝑡 ←𝑚
′
.𝑡 ⊲ synchronize metadata

5: if ¬empty(𝐵𝑑,∗) ∧ available(𝐵∗,𝑟) then ⊲ 𝐵𝑑,∗ =
𝐵𝑑,𝑠 (remote) or 𝐵𝑑,𝑟 (local)

6: 𝑛 ← metadata(𝐵𝑑,∗, 𝑐)
7: 𝐵∗,𝑟 [𝑚.ℎ] ← 𝐵𝑑,∗ [𝑛.𝑡]
8: 𝑚.𝑠𝑏 ←𝑚.𝑠𝑏 + 1
9: 𝑚.ℎ ←𝑚.ℎ + 1 mod capacity(𝐵∗,𝑟)
10: 𝑚.𝑠𝑒 ←𝑚.𝑠𝑏

11: if 𝐵𝑑,∗ = 𝐵𝑑,𝑠 ∧ 𝐵∗,𝑟 = 𝐵𝑑,𝑟 then

12: 𝑛.𝑡 ← 𝑛.𝑡 + 1 mod capacity(𝐵𝑑,∗)
13: else

14: 𝑛.𝑠𝑏 ← 𝑛.𝑠𝑏 + 1
15: 𝑛.𝑡 ← 𝑛.𝑡 + 1 mod capacity(𝐵𝑑,∗)
16: 𝑛.𝑠𝑒 ← 𝑛.𝑠𝑏

17: else

18: if 𝐵𝑑,∗ = 𝐵𝑑,𝑠 ∧ 𝐵∗,𝑟 = 𝐵𝑑,𝑟 then

19: 𝐵∗,𝑟 [−1] ← 𝐵𝑑,∗ [−1] ⊲ dummy transfer

4.4 Traffic Regularization

We explain how IOValve transfers data items remotely between
DPUs without covert channels. The design of this secure remote
data transfer largely overlaps with the congestion-free memory
transfer between the host and the DPU (§4.3)—it periodically and
directly transfers data items between ring buffers and synchronizes
these buffers in a lazy manner. However, there are three critical
differences in their implementation or security landscape. First,
this remote data transfer uses RDMA instead of DMA. Second, this
remote data transfer is explicitly observable by a covert channel
listener (unlike the data transfer between the host and DPU). Third,
this remote data transfer is between trusted entities (i.e., DPUs)
which are cooperative.
Periodic remote data push. IOValve runs the regularizer at the
DPU which enforces periodic remote data push to a peer DPU using
one-sided RDMA Write and Read operations. Unlike two-sided
RDMA Send and Recv operations, one-sided RDMA operations
allow the sender to write and read data to and from the receiver’s
memory without involving the receiver’s CPU (they must agree on
which memory addresses are directly accessible during connection
establishment). That is, the receiver’s RNIC directly writes and reads
(DMA) data to and from the receiver’s memory addresses specified
by the sender. In particular, the sender uses RDMA Read to poll the
metadata of the peer’s receive buffer for lazy synchronization. Also,
it uses RDMAWrite for remote inter-buffer direct data transfer and
sharing its metadata of the peer’s receive buffer with the peer for
lazy synchronization. Rather than issuing two respective RDMA
Write commands for a data item andmetadata, IOValve uses RDMA
Write with immediate to piggyback the metadata into the data
transfer, reducing the number of RDMA operations.
Uniform data transfer. IOValve ensures uniform data transfer
by sending out the same amount of data to a remote party at a fixed
time interval. The sent data is either a real data item to be enqueued
in the peer DPU’s receive buffer or a fake data item to be discarded.

Table 1: Source Lines of Code (SLoC) of IOValve in C.

Component SLoC Component SLoC

IOValve

Adapter 258 Puller and pusher 805
Regularizer 893 Ring buffer 255

Compatibility layer

NCCL Net plugin 350

More specifically, the regularizer periodically checks its send buffer
(filled by the puller) and the peer DPU’s receive buffer (consumed
by the pusher) to transfer a data item while padding the item with
dummy data if it is smaller than the transfer unit. If the send buffer
is empty or the peer’s receive buffer is full, the regularizer transfers
a dummy data item to the peer’s dummy buffer which will be dis-
carded (Algorithm 4). Due to remote reading of metadata, the data
transfer pattern between DPUs is composed of small RDMA Read
and large RDMA Write—both are uniformly sized. Since all net-
work traffic between DPUs is protected with hardware-accelerated
encryption, the network adversary cannot differentiate real data
transfer from fake data transfer. Using uniform-size network pack-
ets and adjusting packet transmission intervals are well-known
and effective countermeasures against traffic analysis [35, 127],
IOValve adopts them in the context of a programmable network
device.
Hardware-accelerated encryption. IOValve encrypts (uniform-
size) messages before sending them onto the untrusted network to
ensure confidentiality. IOValve must encrypt packets at the DPU
because it does not trust the host. Since IOValve assumes low-
latency and high-bandwidth networks (e.g., several 10s or 100s of
Gbit/s), hardware acceleration is necessary to encrypt or decrypt
themwithout performance degradation. If IOValve is configured to
use InfiniBand, it should use InfiniBand-specific encryption mecha-
nisms [101, 112, 128]. However, none of them is widely available.
To this end, IOValve uses RDMA over Converged Ethernet version
2 (RoCEv2) [52] which transmits RDMA packets over UDP. We use
the IPSec hardware acceleration to encrypt these UDP packets [85].
Persistent node-level connection. Another technique IOValve
has adopted to regularize the network traffic is to persist node-level
connections during data processing. That is, IOValve establishes
per-node connections during system provisioning and maintains
them until the system terminates (e.g., the user no longer uses it
or the DPU gets reset). That is, IOValve does not establish connec-
tions based on the application’s demand because it can result in
covert channels. This node-level connection also avoids the com-
munication overhead to re-establish connections [61].

5 Implementation

In this section, we explain how we implement IOValve. We do not
cover components related to provisioning and attestation because
we rely on existing software and libraries (e.g., running a web server
at the DPU) to realize them. Table 1 shows the Source Lines of Code
(SLoC) in the main components of our implementation of IOValve.
The counts do not include any other library source files.

CCS ’25, October 13–17, 2025, Taipei, Taiwan Sangho Lee, Jules Drean, Yue Tan, and Marcus Peinado

5.1 DPU Configuration

We configure the host and the IOValve DPU to satisfy the hard-
ware requirements mentioned in §4.1. First, we do not install any
extra NIC on our machine and do not connect Ethernet cables to
the machine’s motherboard-integrated NICs. Second, we directly
plug our DPU into the machine’s motherboard. That is, there are
no additional PCIe switch devices. Third, we program the Blue-
Field DPU’s firmware (using mlxconfig) to make it use Zero-Trust
mode [87] which ignores all administration commands from the
host. Also, we enable the DPU’s storage emulation and hide its
RNIC from the host—the host can only see the BlueField DPU’s
DMA device. Fourth, we connect the BlueField DPU’s out-of-band
port to the machine’s BMC port to let the DPU control the BMC.
In addition, we confirm that no extra configuration is required to
prevent the host from accessing the DPU memory because this is
disallowed by default 1.

5.2 Congestion-Free Memory Transfer

We implement the three components of congestion-free memory
transfer: the adapter, puller, and pusher. The adapter is a library
for host applications (and compatibility layers) whereas the puller
and pusher are threads running in the DPU. We leverage DOCA to
implement them.
Adapter. The adapter provides two functions. The first allocates
and maintains host-side memory buffers for DMA. It allocates page-
aligned buffers for each node pair and registers them as DMA-
able buffers using NVIDIA DOCA APIs (version: 2.2.0080) like
doca_mmap_set_memrange and doca_mmap_start. The second cre-
ates ring buffers inside the DMA-able buffers and provides APIs to
enqueue and dequeue data items or pointers to and from them. All
data items and metadata of the ring buffers are cache line aligned.
Puller and pusher. The puller and pusher provide two functions.
First, it allocates and maintains page-aligned DPU memory buffers
for DMA and RDMA. It allocates enough buffer space for 2𝑛 uni-
directional ring buffers where 𝑛 is the number of communication
partners specified by the user. Second, it provides APIs to copy data
items from the host buffer to the DPU buffer and vice versa through
DMA.More specifically, it uses DOCA’s DMAAPIs to enqueueDMA
jobs to the DMA SQ (i.e., doca_workq_submit) and poll the DMA
Completion Queue (CQ) (i.e., doca_workq_progress_retrieve).

5.3 Traffic Regularization

We implement the traffic regularizer as a DPU application consisting
of multiple threads for inter-node connection management and
memory transfer.
Connectionmanagement. The regularizer runs three threads for
RDMA connection management: RDMA client, RDMA server, and
RDMA CQ poller. The RDMA client and server threads establish
two unidirectional RDMA Queue Pairs (QPs) for each node pair.
Once all node-level channels have been established, they do noth-
ing but maintain the established channels. The poller keeps polling

1https://forums.developer.nvidia.com/t/how-to-deal-with-dma-on-the-host-to-
access-dpus-memory/221441

the RDMA CQ to handle RDMA Send/Recv operations for connec-
tion establishment (e.g., share RDMA memory regions and corre-
sponding RDMA keys). It also handles the completion of RDMA
Write and Read operations to ensure the CQ never overflows. We
use the libibverbs and librdmacm libraries (version: 2307mlnx47-
1.2307050) to implement all RDMA-related functionality.
Remotememory transfer. The regularizer runs an RDMA sender
thread for periodic remote data pushing. The sender performs two
tasks for each peer node (round robin). First, it periodically checks
the metadata of its send buffer and RDMA reads the metadata of
a peer’s receive buffer to check whether there is a new data item
and to see whether the receiver can store it using ibv_post_send
with IBV_WR_RDMA_READ. Second, it periodically RDMA writes data
and metadata to the peer’s memory using ibv_post_send with
IBV_WR_RDMA_WRITE_WITH_IMM. If there is a new data item and the
receive buffer is available, an RDMA operation uses valid source
and destination addresses belonging to the send and receive ring
buffers. Otherwise, it writes dummy data to a peer’s memory region
which is RDMA-able but will never be accessed by the peer.

5.4 NCCL Compatibility Layer

We implement a compatibility layer for NCCL [89] to run Py-
Torch [117] with IOValve. NCCL already specifies the NCCL Net
plugin API [86] to let developers or users run NCCL on custom net-
work environments. We write a NCCL plugin for IOValve which
requires implementing essential functions such as accept, connect,
isend, irecv, listen, and test. Specifically, our isend and irecv
generate send and receive requests, and test attempts to enqueue
or dequeue requests to or from corresponding host ring buffers
until it succeeds.

6 Evaluation

We evaluate IOValve by answering the following questions:
• RQ1. Is IOValve robust against covert channels? (§6.2)
• RQ2.Howmuch network performance overhead does IOValve
introduce? (§6.3)
• RQ3.What would be the realistic performance implication of
IOValve when we use it for real-world applications like LLM
fine-tuning, LLM batch inference, and molecular dynamics
simulation (§6.4)?

6.1 Experimental Setup

Our experimental setup consists of two interconnected computing
nodes. Each node features two Intel Xeon Silver 4510 processors
(24 physical cores running at 2.4 GHz), 256GiB of RAM, and 1 TB
of NVMe SSD. It runs Ubuntu 22.04.5 LTS and its kernel version
is 5.15. Each node is equipped with one NVIDIA BlueField-3 DPU
with two up to 200Gbit/s Ethernet/InfiniBand ports (B3220). Due
to hardware constraints, we connect them directly through a single
100Gbit/s Ethernet cable while enabling RoCEv2 [52] for RDMA
over UDP (i.e., no InfiniBand). Our BlueField-3 DPU features 16 Arm
cores running at 2.1 GHz, 16GiB of RAM, and 128GB of NVMe SSD.
It runs Ubuntu 22.04.3 LTS whose kernel version is 5.15 (customized
for BlueField). Both the BlueField DPU and the host machine use
DOCA [90] for communication and data exchange. Also, to evaluate
our system with real-world applications using GPUs, we install an

IOValve : Leakage-Free I/O Sandbox for Large-Scale Untrusted Data Processing CCS ’25, October 13–17, 2025, Taipei, Taiwan

5 6 7 8 9 10

None
DRAM
PCIe

RDMA latency [µs]

(a) RDMA with host memory

5 6 7 8 9 10

None
DRAM
PCIe

RDMA latency [µs]

(b) RDMA with DPU memory

Fig. 3: Comparison of RDMA Write latency with PCIe con-

gestion, memory congestion, and no congestion.

NVIDIA TESLA P40 GPU with 24GiB of memory on each node
with driver version 550.127.05 and CUDA version 12.4. There is no
peer-to-peer communication between the GPU and DPU.

6.2 Covert Channel Robustness

Because of single tenancy and traffic filtering at the DPU (§4.2),
modulating the legitimate network traffic is the only covert channel
that untrusted host code could potentially use to transmit data to
the outside (§4.3). We evaluate whether IOValve is robust against
network covert timing channels due to congestion at the only two
hardware resources shared between the host and DPU: host mem-
ory and DPU’s PCIe switch. Note that, as mentioned in §4.3 and
§5.1, DPU memory congestion by the adversary is not possible such
that we do not evaluate this aspect. To this end, we measure the
RDMA Write latency of baseline (i.e., RDMA with host memory)
and IOValve (i.e., RDMA with DPU memory) with and without
intentional congestion. We focus on pure RDMA latency (i.e., with-
out host-DPU DMA, traffic regularization, and CPU contention)
because additional overhead would hide the congestion effect.

In all experiments, we run qperf [39] rc_rdma_write_lat with
a 64 B payload (a cache line) between a pair of hosts and a pair
of DPUs, respectively. One side (host or DPU) acts as the qperf
client while the other side (DPU or host) acts as the qperf server.
In the qperf RDMA Write latency test, the server prepares a buffer
for RDMA and sleeps (i.e., no CPU involvement), and the client
sends a packet to the server whose RNIC hardware immediately
generates acknowledgments. The client measures the round-trip
time upon receiving acknowledgments by polling the RDMA CQ.
In our experiments, we measure the sensitivity of this round-trip
time to various actions of the server host. We repeat each qperf
measurement 1,000 times.
Host memory congestion. To show whether and how memory
congestion affects the network traffic of the baseline and IOValve,
we evaluate how amemory bandwidth benchmarking program [67],
which fully stresses the DRAM at the host, affects RDMA latency.
We let the program use all physical cores of the qperf server while
measuring RDMA latency at the client. Fig. 3 shows the results. The
host RDMA (baseline) latencies without and with memory conges-
tion are 6.06 µs and 8.75 µs on average, respectively (Fig. 3a). That is,
the RDMA latency with host memory increases by 44% on average
when the host memory is congested, resulting in clearly observ-
able inter-packet delay differences. In contrast, the host memory
congestion does not affect the RDMA latency of IOValve (7.04 µs
versus 7.09 µs Fig. 3b). Here, the RDMA latency with DPU memory
is higher than that with host memory (regardless of congestion)

because the DPU memory is slower than the host memory. The
two-sample Kolmogorov-Smirnov statistic [16], which is a well-
known measure to recognize covert channels [129], between the
DPU RDMA latencies without and with host memory congestion is
0.069. In contrast, the same statistic for the host RDMA latency with-
out and with host memory congestion is 1. Consequently, IOValve
is robust against covert channels based on host memory congestion.
PCIe congestion. IOValve is also robust against covert channels
due to PCIe congestion. Since IOValve prevents the host from di-
rectly accessing the RNIC and DPU memory, the host cannot easily
congest the DPU’s PCIe switch unlike existing PCIe congestion side
channels [111] (i.e., no high-volume DMA exists). Instead, we write
a program which repeatedly sends PCIe packets to the DPU by
retrieving its PCIe configuration space. We run this program on the
qperf server on all its physical cores while measuring the RDMA
latency at the qperf client. The PCIe congestion program increases
the host RDMA latency by 20% on average (Fig. 3a). In contrast, this
program only increases the DPU RDMA latency by 0.85% which is
within error bounds (Fig. 3b). The two-sample Kolmogorov-Smirnov
statistic between the DPU RDMA latency without and with PCIe
congestion is 0.09. In contrast, that between the host RDMA la-
tency without and with PCIe congestion is 0.997. It is worth noting
that even if an adversary figures out some other effective way to
congest the DPU’s PCIe switch from the host, we expect that these
would not effectively modulate IOValve’s network traffic. This is
because the BlueField-3 DPU, that IOValve is based on, intercon-
nects the RNIC, CPU, and PCIe switch via a coherent mesh (§2.2).
That is, the RNIC and the CPU are directly connected such that
their communication is negligibly affected by the PCIe switch.

6.3 Micro-benchmark: Network Performance

We evaluate the latency and throughput of IOValve’s message
transfer as well as its collective communication performance. It
is worth noting that this section only considers the network per-
formance overhead of IOValve. Real-world workloads consist of
both intra-node computation and inter-node communication such
that the network performance overhead can be hidden especially if
workloads are computationally expensive (§6.4).

We use the PyTorch communication benchmark [50] to measure
the throughput of three collective operations: AllGather, AllReduce,
and ReduceScatter. We additionally write two scripts based on this
benchmark to measure round-trip latency and throughput. We run
them with our two nodes using torchrun [98] which feature NCCL
version 2.18.1 and PyTorch 2.1.1+cu121.
Latency and throughput. We compare the network latency (i.e.,
half the round-trip time) and throughput of IOValve against the
stock NCCL with host RDMA. We vary the unit transfer size from
64 B to 128 KiB for the latency measurement (with the isend func-
tion) and from 64 B to 1MiB for the throughput measurement (with
the broadcast function) 2. We repeat each measurement 100 times
and average them. Fig. 4 shows the results. The latency of IOValve
is 77.4%–2.8× higher than that of the stock NCCL and its through-
put is 16.8%–39.1% lower than that of the stock NCCL. Neither
stock NCCL nor IOValve benefits from a transfer unit greater than

2PyTorch’s isend did not allow us to transfer a single tensor larger than 128KiB so
we were not able to test the latency with larger than 128 KiB transfer units.

CCS ’25, October 13–17, 2025, Taipei, Taiwan Sangho Lee, Jules Drean, Yue Tan, and Marcus Peinado

64 12
8

25
6

51
2

1K
i

2K
i

4K
i

8K
i

16
Ki

32
Ki

64
Ki

12
8K

i0
100
200
300
400

Transfer size [B]

La
te
nc
y
[µ
s] baseline

IOValve

(a) Latency

64 12
8

25
6

51
2

1K
i

2K
i

4K
i

8K
i

16
Ki

32
Ki

64
Ki

12
8K

i
25
6K

i
51
2K

i
1M

i0

4

8

12

Transfer size [B]

Th
pt

[G
B/
s] baseline

IOValve

(b) Throughput

1 2 3 4 8 16 32

0
4

8
12

Buffer size [# of messages]

Th
pt

[G
B/
s]

64 KiB 256 KiB 512 KiB

(c) IOValve throughput by buffer size

Fig. 4: Comparison of the network latency and throughput between IOValve and stock NCCL (baseline).

512 KiB. IOValve’s high latency is expected because it copies a data
item from a host to a DPU, between DPUs, and then from a DPU
to a host in stages (two DMA and one RDMA operations) whereas
the stock NCCL directly copies a data item between hosts using a
single RDMA operation. If there are one or more hops (e.g., RDMA
switches) between DPUs, IOValve’s latency overhead would de-
crease. In contrast, IOValve’s throughput overhead is reasonably
low even though there are dummy transfers and host-to-DPU and
DPU-to-DPU communications are loosely synchronized.

We evaluate how the ring buffer size affects network perfor-
mance for various message or unit transfer sizes (i.e., 64, 256, and
512 KiB). The throughput of IOValve is largely independent of the
buffer size (Fig. 4c). This is because IOValve maintains a separate
ring buffer for each unidirectional connection, and a node waits for
an acknowledgment for its old real message from the peer before
sending a new real message. This acknowledgment traffic is also
regularized. IOValve dequeues and transfers one real (if it exists) or
dummy message at a time (i.e., there is no batching), so its latency
is independent of the buffer size.
Collective communication. We compare IOValve’s collective
communication performance against the stock NCCL with host
RDMA. We configure IOValve to use two transfer sizes: 256 KiB
and 64KiB. We set the NCCL_BUFFSIZE environment variable ac-
cordingly to let NCCL break down messages larger than 256 KiB or
64 KiB. We do not adjust the transfer size of the stock NCCL. Fig. 5
shows the results. As expected, IOValve’s throughput overhead is
high if the data size is small (e.g., smaller than 2MB). Its throughput
is 60.9%–6.1× (with 256 KiB transfer) and 30%–3.5× (with 64 KiB
transfer) lower than that of the stock NCCL. This is expected be-
cause IOValve does not use variable-length transfer (unlike the
stock NCCL) and its transfer units are mostly empty in those cases.
However, when the data size is between 2MB and 30MB, IOValve’s
throughput is 34.1%–90.4% lower than that of the stock NCCL. Also,
when the data size is larger than 30MB, IOValve’s throughput is
18.7%–39.1% lower than that of the stock NCCL. These numbers
are based on 256 KiB transfers. One way to avoid this problem is to
use various transfer unit sizes to minimize the traffic wastage but
this weakens the security of IOValve—a further study is necessary
to figure out tolerable information leakage.

In addition, we evaluate the NCCL throughput of IOValve with
transfer sizes of 512 KiB and 1MiB and confirm that they are worse
than that with 256 KiB transfer. This is because their marginal

throughput improvement does not compensate for their high la-
tency overhead. To this end, we decide to use 256 KiB as the default
transfer size of the remaining experiments (§6.4).

6.4 Real-World Applications

We evaluate IOValve on three real-world applications: LLM fine-
tuning, LLM batch inference, and molecular dynamics.
LLM fine-tuning. We evaluate the performance of IOValve for
LLM fine-tuning which adjusts the parameters of a pre-trained
general-purpose LLM with custom (and possibly confidential) data.
To this end, we fine-tune Llama 3 [34] using an open-source fine-
tuning script [105] which relies on Hugging Face Transformers [46],
PyTorch Fully Sharded Data Parallel (FSDP) [139], and QLoRA [32]
with the 4-bit NormalFloat (NF4) quantization. We configure the
script to use the half-precision floating point format (FP16). We
fine-tune the Llama 3 8B model with 100–500 training instructions
and the Llama 3 70B model with 100–200 training instructions
randomly sampled from the No Robots dataset [99] where each
training instruction consists of system, user, and assistant prompts.
We compare the performance of IOValve over the baseline where
we use the same script with the stock NCCL plugin and host RDMA.
We repeat the experiments five to ten times while measuring to-
tal training time. We confirm that IOValve marginally increases
fine-tuning training time by 2.1%–4.1% as shown in Fig. 6a. The
performance overhead of IOValve decreases as we increase the
model size, the number of training instructions, or both, which
results in high computation overhead—fine-tuning spends more
time on using CPUs and GPUs before transmitting computation
results through a NIC.
LLM batch inference. We evaluate the performance of IOValve
for batch inference that collects and processes several inputs (or
prompts) together to improve token generation throughput [63],
which is useful for both online and offline inference [93]. We write
a distributed batch inference script using Hugging Face Transform-
ers [46]. This script fits the Llama 3 8B model [34] on our two GPUs
with tensor parallelism. We use neither sampling nor key-value
cache for more deterministic results. We use prompts randomly
sampled from the Argilla’s ShareGPT dataset [10] and let our script
generate up to 50 tokens for each prompt. We repeat the experi-
ments ten timeswhilemeasuring their token generation throughput.
Fig. 6b shows the evaluation results. The token generation through-
put of the batch inference with IOValve is 0.2%–8.5% lower than
that with the stock NCCL when the number of batched prompts

IOValve : Leakage-Free I/O Sandbox for Large-Scale Untrusted Data Processing CCS ’25, October 13–17, 2025, Taipei, Taiwan

10−1 100 101 102 103
0
2
4
6
8

Data size [MB]

Th
pt

[G
B/
s]

baseline IOValve (256 KiB)
IOValve (64 KiB)

(a) AllGather

10−1 100 101 102 103
0
2
4
6
8

Data size [MB]

Th
pt

[G
B/
s]

(b) AllReduce

10−1 100 101 102 103
0
2
4
6
8

Data size [MB]

Th
pt

[G
B/
s]

(c) ReduceScatter

Fig. 5: Comparison of collective communication throughput between IOValve and stock NCCL (baseline).

8B 70B

100 200 300 400 500 100 200
0
20
40
60
80

of training instructions

Ti
m
e
[m

in
] baseline

IOValve

0

100

200

300

(a) Llama 3 fine-tuning

1 5 10 20 30 40 50
0

40

80

120

Number of batched prompts

Th
pt

[t
ok

en
/s
]

baseline
IOValve

(b) Batch inference’s token generation

Training Fine-tuning
0

100
200
300

Ti
m
e
[m

in
]

baseline IOValve

(c) DeePMD training and fine-tuning

Fig. 6: Comparison of the performance of real-world applications between IOValve and stock NCCL (baseline).

lies between 1 and 50. Both achieve the highest throughput at the
batch size of 20 where IOValve’s throughput is 1.4% lower than
that of the stock NCCL. State of the art LLM serving systems like
vLLM [63] focus on achieving high throughput with a large batch
size and IOValve aligns with this.
Molecular dynamics. We evaluate the performance of IOValve
for DeePMD [124] which enables deep learning for molecular dy-
namics to simulate the movement of atoms and molecules over time.
DeePMD supports PyTorch Distributed Data Parallel (DDP) [70] as
its backend.We use its incorporated example and dataset (water/se_e2_a)
to train a small deep learning model and to fine-tune a foundation
model [137]. We repeat the experiments ten times. Fig. 6c shows
the results. IOValve marginally increases training and fine-tuning
times by 3.4% and 5.1%, respectively. Like LLM fine-tuning and
batch inference, DeePMD is computationally expensive such that
IOValve does not incur high overhead.

7 Discussion

In this section, we discuss design alternatives and limitations.
Alternative design: Middlebox. IOValve is a network interposer
between a node and the outside. This makes a middlebox [11, 129]
and a sidecar [36] potential candidates for realizing IOValve. A
middlebox is a bump-in-the-wire machine which is typically a pro-
grammable switch [11, 129] or a general-purpose computer. We
do not consider a middlebox-based IOValve because a middlebox
typically manages multiple nodes (e.g., in the same rack as a Top-of-
Rack (ToR) switch) and is operated by the cloud provider. Assuming
a per-node middlebox with full user control is less practical. Also,
the middlebox should process or filter the arbitrary packets gener-
ated by the host, potentially resulting in resource congestion which
leads to covert channels.

Alternative design: Sidecar. A proxy or sidecar [36] is attached to
a target instance (a container or VM) tomanipulate its behavior (e.g.,
filtering and encrypting its network traffic). We do not consider a
sidecar-based IOValve due to the following two reasons. First, the
sidecar relies on the underlying operating system or hypervisor to
interpose on the network traffic of the target node (or instance).
However, IOValve does not trust any code running inside the node.
Second, the sidecar is vulnerable to covert channels because it
is running inside the node which also runs the untrusted target
instance—i.e., there is no spatial separation. To this end, we focus
on the DPU-based IOValve design in this paper.
Interface and protocol robustness. Hardening I/O interface
and protocol for confidential or untrusted computing is a chal-
lenging problem [66]. IOValve overcomes this problem using a
static interface and a simple protocol. That is, it does not support
variable-length messages and various message types which can re-
sult in memory safety vulnerabilities. It copies fixed-size messages
from a fixed set of known memory addresses (i.e., fixed-size ring
buffer slots) of a host to a DPU and transfers them to a fixed set of
peers which are determined during provisioning, thereby making
its interface and protocol difficult to misimplement.
Limitation. One limitation of IOValve is that it is less suitable
for dynamic and latency-sensitive data processing like chatbots.
Technically, we can enforce traffic regularization between the user’s
on-premises machine and the DPU (like the one between DPUs) to
securely exchange prompts and responses, mitigating the token-
length side-channel attack [126]. However, since the lengths of
prompts and responses are largely unpredictable, we should suf-
ficiently enlarge the unit transfer size which suffers from non-
negligible network overhead. We leave this to future work.

CCS ’25, October 13–17, 2025, Taipei, Taiwan Sangho Lee, Jules Drean, Yue Tan, and Marcus Peinado

Deployability and compatibility. IOValve requires bare metal
instances with DPUs and does not apply to VMs. However, we target
large-scale computations spanning multiple nodes with GPUs for
which bare metal instances are a better fit than VMs. Major cloud
providers offer DPUs (§2.2) and provide bare-metal cloud services
based on them [7]. IOValve imposes no restrictions on the host
software stack beyond requiring NCCL support. As distributed GPU
computations require NCCL along with CUDA, this should involve
no extra effort. In addition, IOValve requires a network plugin on
the host which is analogous to a user-mode NIC driver.

8 Related Work

Sandboxes. A long line of systems aims to protect sensitive data
from the software that processes them [6, 15, 29, 31, 54, 58, 62,
72, 75, 92, 104, 108, 121, 125, 133, 134]. This work goes back to at
least the 1960s and 1970s and spans many generations of hard-
ware and software. A common theme is fine-grained hardware
sharing between the untrusted software and the software TCB.
Examples include untrusted processes and a trusted operating sys-
tem [62, 108, 121, 133, 134] or untrusted VMs and a trusted hyper-
visor [15, 58, 104] sharing the same processor cores. As a result
of this fine-grained sharing, these systems contend with an in-
tractable multitude of hardware side and covert channels [140].
The VAX VMM Security Kernel included serious efforts to elimi-
nate and mitigate hardware side channels but was only partially
successful [58]. More recently, the flood of microarchitectural side
channels [20, 73] raises fundamental questions about the possibility
of avoiding covert channels under fine-grained hardware sharing.

Several systems limit hardware sharing by partitioning processor
cores [21, 140] or other microarchitectural resources [122]. While
this eliminates many of the known side channels, the remaining
shared hardware can still be used to construct covert channels.
IOValve avoids these problems by moving sandbox enforcement
to what is effectively a separate computer.
Confidential untrusted computing. Starting with Ryoan [48],
several systems move the sandbox into the cloud and use SGX
enclaves to protect it from the cloud provider [3, 47, 48, 95]. These
systems inherit key security and performance properties from SGX.

First, fine-grained sharing of processor hardware between an
untrusted operating system and the sandbox inside an enclave
provides an abundance of hardware side channels [17, 22, 42, 45, 65,
68, 69, 79, 97, 109, 120] that can be used to build covert channels.
Unsurprisingly, mitigations in these systems focus on software-
based covert channels while hardware covert channels are declared
out of scope and ignored. In contrast, IOValve moves the sandbox
boundary to where these channels do not even exist.

Second, the sandbox inside an SGX enclave is an application
running on an untrusted operating system. This prevents direct
hardware access by the sandbox and introduces transitions into
and out of enclaves as a source of overhead. Lack of support for
intra-enclave isolation by SGX forces these systems to use soft-
ware techniques (e.g., SFI [123] and NaCl [131]), incurring addi-
tional overhead. None of the systems was evaluated with high-
performance hardware. Chiron [47] reports CIFAR training times
of several hours—a task that has been completed in seconds on an

A100 GPU [57]. IOValve is not subject to any of these limitations,
as it runs natively on the host with unencumbered hardware access.

Hecate [38] and Erebor [136] place the sandbox inside AMD
SEV-SNP and Intel TDX CVMs which hold the promise of better
hardware access. DLBox [49] andContinuumAI [74] let the sandbox
access a GPU. These sandboxes could benefit from TDISP [96] and
NVLink encryption [91] for secure and efficient device access once
they are available. On the other hand, CVMs retain SGX’s fine-
grained sharing of processor hardware. This leaves them with the
same intractable covert channel problem as in the SGX case.
Confidential large-scale computing. Several recent studies have
considered how to realize confidential computing over multiple
nodes. HETEE [141] leverages a recent technology called the PCIe
ExpressFabric to program the PCIe connection between nodes and
accelerators (e.g., GPUs) with an external controller. HETEE and
IOValve can benefit from each other because HETEE has no secu-
rity mechanism against covert channels and IOValve can leverage
HETEE’s programmable spatial separation. Akram et al. [4] and
Mohan et al. [80] study whether existing confidential CPU and
GPU technologies are suitable for securing HPC and AI workloads.
They conclude that core-level execution, large TCB, slow CPU-GPU
interaction due to encryption, and a lack of side-channel mitigation
result in insecure or unusable systems. In contrast, IOValve does
not suffer from the issues they mention.
Network side-channel mitigation. Traffic analysis can reveal or
fingerprint traffic content regardless of whether it is encrypted [19,
35, 76, 77, 103, 127, 138]. Network side-channel mitigations cope
with this threat by shaping a victim’s benign traffic tomake it robust
against side-channel analysis. Instead of using constant or fixed
shaping which is known to be secure but incurs overhead for bursty
traffic [35], these schemes propose traffic-aware adaptive shaping
mechanisms with statistical privacy guarantees [19] or using dif-
ferential privacy [103]. However, they generally exclude covert
channels from their threat model. IOValve uses constant-rate shap-
ing instead of adaptive mechanisms because statistical privacy is
difficult to ensure against malicious applications and covert-channel
attackers [43, 77, 103]. Also, IOValve targets collective communi-
cation which has almost uniform traffic patterns (§2.3).

9 Conclusion

There is an ever growing demand for large-scale computation on
confidential data. However, it is difficult to maintain data confiden-
tiality while trusting neither the compute infrastructure nor the full
software stack. The former can be astronomically expensive, and
the latter is difficult to achieve due to complicated software supply
chains. IOValve addresses this critical security problem by rethink-
ing the perimeter of confidential computing: it runs untrusted soft-
ware on bare-metal machines in the public cloud whose external
interactions (i.e., network I/O) are strictly encrypted, filtered, and
regularized by separate hardware components (i.e., DPUs) to defeat
both overt- and covert-channel attacks. Our evaluation shows that
IOValve has marginal performance overhead and supports real-
world applications (i.e., LLM fine-tuning and batch inference, and
molecular simulation).

IOValve : Leakage-Free I/O Sandbox for Large-Scale Untrusted Data Processing CCS ’25, October 13–17, 2025, Taipei, Taiwan

Acknowledgments

We would like to thank Paul England for his insight and support.
We also thank the anonymous reviewers for their helpful feedback.

References

[1] Advanced Micro Devices, Inc. 2024. AMD Pensando Networking. https://www.
amd.com/en/products/accelerators/pensando.html.

[2] Saksham Agarwal, Rachit Agarwal, Behnam Montazeri, Masoud Moshref,
Khaled Elmeleegy, Luigi Rizzo, Marc Asher De Kruijf, Gautam Kumar, Sylvia
Ratnasamy, David Culler, and Amin Vahdat. 2022. Understanding Host Inter-
connect Congestion. In Proceedings of the 21st ACM Workshop on Hot Topics in
Networks (HotNets).

[3] Adil Ahmad, Juhee Kim, Jaebaek Seo, Insik Shin, Pedro Fonseca, and Byoungy-
oung Lee. 2021. Chancel: Efficient Multi-client Isolation Under Adversarial
Programs. In Proceedings of the 2021 Annual Network and Distributed System
Security Symposium (NDSS). San Diego, CA.

[4] Ayaz Akram, Venkatesh Akella, Sean Peisert, and Jason Lowe-Power. 2022.
SoK: Limitations of Confidential Computing via TEEs for High-Performance
Compute Systems. In 2022 IEEE International Symposium on Secure and Private
Execution Environment Design (SEED).

[5] Rahaf Alkhadra, Joud Abuzaid, Mariam AlShammari, and Nazeeruddin Moham-
mad. 2021. Solar Winds Hack: In-Depth Analysis and Countermeasures. In 2021
12th International Conference on Computing Communication and Networking
Technologies (ICCCNT).

[6] Kalev Alpernas, Cormac Flanagan, Sadjad Fouladi, Leonid Ryzhyk, Mooly Sagiv,
Thomas Schmitz, and Keith Winstein. 2018. Secure serverless computing using
dynamic information flow control. Proceedings of the ACM on Programming
Languages 2, OOPSLA (2018).

[7] Amazon Web Services, Inc. 2024. The Security Design of the AWS Nitro Sys-
tem. https://docs.aws.amazon.com/whitepapers/latest/security-design-of-aws-
nitro-system/security-design-of-aws-nitro-system.html.

[8] AMD. 2021. AMD SEV-SNP: Strengthening VM Isolation with Integrity Protec-
tion and More. https://www.amd.com/content/dam/amd/en/documents/epyc-
business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-
integrity-protection-and-more.pdf.

[9] Anyiscale, Inc. 2024. Productionizing and scaling Python ML workloads simply
– Ray. https://www.ray.io.

[10] Argilla. 2023. Dataset Card for sharegpt-text-descriptives. https://huggingface.
co/datasets/argilla/sharegpt-text-descriptives.

[11] Manikandan Arumugam, Deepak Bansal, Navdeep Bhatia, James Boerner, Simon
Capper, Changhoon Kim, Sarah McClure, Neeraj Motwani, Ranga Narasimhan,
Urvish Panchal, Tommaso Pimpo, Ariff Premji, Pranjal Shrivastava, and Rishabh
Tewari. 2022. Bluebird: High-performance SDN for Bare-metal Cloud Services.
In Proceedings of the 19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI). Renton, WA.

[12] Yechan Bae, Sarbartha Banerjee, Sangho Lee, and Marcus Peinado. 2022.
Spacelord: Private and Secure Smart Space Sharing. In Proceedings of the 38th
Annual Computer Security Applications Conference (ACSAC).

[13] Andrew Baumann, Marcus Peinado, and Galen Hunt. 2014. Shielding Applica-
tions from an Untrusted Cloud with Haven. In Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI). Broomfield,
Colorado.

[14] David E. Bell and Leonard La Padula. 1976. Secure Computer System: Unified
Exposition and Multics Interpretation. Technical Report MTR-2997, Rev. 1. MITRE
Corporation.

[15] Stefan Berger, Ramón Cáceres, Dimitrios Pendarakis, Reiner Sailer, Enriquillo
Valdez, Ronald Perez, Wayne Schildhauer, and Deepa Srinivasan. 2008. TVDc:
Managing Security in the Trusted Virtual Datacenter. ACM SIGOPS Operating
Systems Review 42, 1 (2008), 40–47.

[16] Vance W Berger and YanYan Zhou. 2014. Kolmogorov–Smirnov test: Overview.
Wiley statsref: Statistics reference online (2014).

[17] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. 2017. Software Grand Exposure: SGX Cache
Attacks Are Practical. In Proceedings of the 11th USENIX Workshop on Offensive
Technologies (WOOT).

[18] Robert Buhren, Hans-Niklas Jacob, Thilo Krachenfels, and Jean-Pierre Seifert.
2021. One Glitch to Rule Them All: Fault Injection Attacks Against AMD’s
Secure Encrypted Virtualization. In Proceedings of the 28th ACM Conference on
Computer and Communications Security (CCS). Virtual.

[19] Xiang Cai, Rishab Nithyanand, Tao Wang, Rob Johnson, and Ian Goldberg.
2014. A Systematic Approach to Developing and Evaluating Website Finger-
printing Defenses. In Proceedings of the 21st ACM Conference on Computer and
Communications Security (CCS). Scottsdale, Arizona.

[20] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von
Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss.
2019. A Systematic Evaluation of Transient Execution Attacks and Defenses. In

Proceedings of the 28th USENIX Security Symposium (Security). Santa Clara, CA.
[21] Charly Castes and Andrew Baumann. 2024. Sharing is leaking: blocking

transient-execution attacks with core-gapped confidential VMs. In Proceedings of
the 29th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). La Jolla, CA.

[22] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and
Ten H. Lai. 2019. SgxPectre Attacks: Stealing Intel Secrets from SGX Enclaves
via Speculative Execution. In Proceedings of the 4th IEEE European Symposium
on Security and Privacy (Euro S&P).

[23] Zitai Chen, Georgios Vasilakis, Kit Murdock, Edward Dean, David Oswald,
and Flavio D Garcia. 2021. VoltPillager: Hardware-based fault injection at-
tacks against Intel SGX Enclaves using the SVID voltage scaling interface. In
Proceedings of the 30th USENIX Security Symposium (Security). Virtual.

[24] Lucian Constantin. 2022. Supply Chain Attacks Increased Over 600% This
Year and Companies Are Falling Behind. https://www.csoonline.com/article/
573925/supply-chain-attacks-increased-over-600-this-year-and-companies-
are-/falling-behind.html.

[25] Intel Corporation. 2021. Intel® Trust Domain Extensions White Pa-
per. https://www.intel.com/content/dam/develop/external/us/en/documents/
tdx-whitepaper-final9-17.pdf.

[26] Franck Courbon, Sergei Skorobogatov, and Christopher Woods. 2016. Reverse
Engineering Flash EEPROM Memories Using Scanning Electron Microscopy.
In International Conference on Smart Card Research and Advanced Applications.
57–72.

[27] Cybersecurity and Infrastructure Security Agency. 2025. Defining In-
sider Threats. https://www.cisa.gov/topics/physical-security/insider-threat-
mitigation/defining-insider-threats.

[28] Datanyze. 2025. Google Cloud Company Profile. https://www.datanyze.com/
companies/google-cloud/356413659.

[29] Pubali Datta, Prabuddha Kumar, Tristan Morris, Michael Grace, Amir Rahmati,
and Adam Bates. 2020. Valve: Securing Function Workflows on Serverless
Computing Platforms. In Proceedings of The Web Conference (WWW).

[30] John Kwao Dawson, Frimpong Twum, James Benjamin Hayfron Acquah, and
Yaw Marfo Missah. 2023. Ensuring confidentiality and privacy of cloud data us-
ing a non-deterministic cryptographic scheme. PLOS ONE 18, 2 (2023), e0274628.

[31] Dorothy E. Denning and Peter J. Denning. 1977. Certification of Programs for
Secure Information Flow. Commun. ACM 20, 7 (July 1977), 504–513.

[32] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. 2023.
QLoRA: Efficient Finetuning of Quantized LLMs. In Advances in Neural Infor-
mation Processing Systems (NeurIPS).

[33] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and Orion Hod-
son. 2014. FaRM: Fast Remote Memory. In Proceedings of the 11th USENIX
Symposium on Networked Systems Design and Implementation (NSDI). Seattle,
WA.

[34] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
et al. 2024. The Llama 3 herd of models. arXiv:2407.21783

[35] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton. 2012.
Peek-a-Boo, I Still See You: Why Efficient Traffic Analysis Countermeasures Fail.
In Proceedings of the 33rd IEEE Symposium on Security and Privacy (Oakland).
San Francisco, CA.

[36] Envoy Project Authors. 2024. Envoy proxy. https://www.envoyproxy.io.
[37] Yue Gao, Ilia Shumailov, and Kassem Fawaz. 2025. Supply-Chain Attacks in

Machine Learning Frameworks. In Proceedings of the Eighth Annual Conference
on Machine Learning and Systems (MLSys).

[38] Xinyang Ge, Hsuan-Chi Kuo, and Weidong Cui. 2022. Hecate: Lifting and
Shifting On-Premises Workloads to an Untrusted Cloud. In Proceedings of the
29th ACM Conference on Computer and Communications Security (CCS). Los
Angeles, CA.

[39] Johann George. [n. d.]. qperf - Measure RDMA and IP performance. https:
//linux.die.net/man/1/qperf.

[40] Daniel B. Giffin, Amit Levy, Deian Stefan, David Terei, David Mazières, John C.
Mitchell, and Alejandro Russo. 2012. Hails: Protecting Data Privacy in Untrusted
Web Applications. In Proceedings of the 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI). Hollywood, CA.

[41] Dan Goodin. 2024. What we know about the xz Utils back-
door that almost infected the world. Ars Technica (March 2024).
https://arstechnica.com/security/2024/04/what-we-know-about-the-xz-
utils-backdoor-that-almost-infected-the-world/

[42] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. 2017.
Cache Attacks on Intel SGX. In Proceedings of the 10th European Workshop on
System Security (EuroSec).

[43] Andreas Haeberlen, Benjamin C. Pierce, and Arjun Narayan. 2011. Differential
Privacy Under Fire. In Proceedings of the 20th USENIX Security Symposium
(Security). San Francisco, CA.

[44] Steven Herschbein, Shida Tan, Richard Livengood, and Michael Wong. 2022.
An Introduction to the FIB as a Microchip Circuit Edit Tool. In International
Symposium for Testing and Failure Analysis.

https://www.amd.com/en/products/accelerators/pensando.html
https://www.amd.com/en/products/accelerators/pensando.html
https://docs.aws.amazon.com/whitepapers/latest/security-design-of-aws-nitro-system/security-design-of-aws-nitro-system.html
https://docs.aws.amazon.com/whitepapers/latest/security-design-of-aws-nitro-system/security-design-of-aws-nitro-system.html
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.ray.io
https://huggingface.co/datasets/argilla/sharegpt-text-descriptives
https://huggingface.co/datasets/argilla/sharegpt-text-descriptives
https://www.csoonline.com/article/573925/supply-chain-attacks-increased-over-600-this-year-and-companies-are-/falling-behind.html
https://www.csoonline.com/article/573925/supply-chain-attacks-increased-over-600-this-year-and-companies-are-/falling-behind.html
https://www.csoonline.com/article/573925/supply-chain-attacks-increased-over-600-this-year-and-companies-are-/falling-behind.html
https://www.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-final9-17.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-final9-17.pdf
https://www.cisa.gov/topics/physical-security/insider-threat-mitigation/defining-insider-threats
https://www.cisa.gov/topics/physical-security/insider-threat-mitigation/defining-insider-threats
https://www.datanyze.com/companies/google-cloud/356413659
https://www.datanyze.com/companies/google-cloud/356413659
https://arxiv.org/abs/2407.21783
https://www.envoyproxy.io
https://linux.die.net/man/1/qperf
https://linux.die.net/man/1/qperf
https://arstechnica.com/security/2024/04/what-we-know-about-the-xz-utils-backdoor-that-almost-infected-the-world/
https://arstechnica.com/security/2024/04/what-we-know-about-the-xz-utils-backdoor-that-almost-infected-the-world/

CCS ’25, October 13–17, 2025, Taipei, Taiwan Sangho Lee, Jules Drean, Yue Tan, and Marcus Peinado

[45] Felicitas Hetzelt and Robert Buhren. 2017. Security Analysis of Encrypted
Virtual Machines. In Proceedings of the 13th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE).

[46] Hugging Face. [n. d.]. Transformers. https://huggingface.co/docs/transformers/
en/index.

[47] Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly Shmatikov, and Emmett
Witchel. 2018. Chiron: Privacy-preserving Machine Learning as a Service.
arXiv:1803.05961

[48] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett Witchel.
2016. Ryoan: A Distributed Sandbox for Untrusted Computation on Secret Data.
In Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI). Savannah, GA.

[49] Jaewon Hur, Juheon Yi, Cheolwoo Myung, Sangyun Kim, Youngki Lee, and
Byoungyoung Lee. 2025. DLBox: NewModel Training Framework for Protecting
Training Data. In Proceedings of the 2025 Annual Network and Distributed System
Security Symposium (NDSS). San Diego, CA.

[50] IBM. 2024. PyTorch communication benchmarks. https://github.com/IBM/
pytorch-communication-benchmarks.

[51] Immuta. 2021. Survey Reveals Emerging Challenges with Data Security, Privacy
Amid Shift to the Cloud. TDWI (2021). https://tdwi.org/articles/2021/11/02/
immuta-survey-news.aspx

[52] Infiniband Trade Association. 2014. RoCEv2. https://cw.infinibandta.org/
document/dl/7781.

[53] Intel Corporation. 2024. Intel Infrastructure Processing Unit (Intel IPU). https:
//www.intel.com/content/www/us/en/products/details/network-io/ipu.html.

[54] Deepak Sirone Jegan, Liang Wang, Siddhant Bhagat, and Michael Swift. 2023.
Guarding Serverless Applicationswith Kalium. In Proceedings of the 32nd USENIX
Security Symposium (Security). Anaheim, CA.

[55] JJ. Kathuria and Arjun Bhardwaj. 2022. Insider Threat: Impact Stud-
ies. https://cloud.google.com/blog/products/identity-security/insider-threat-
impact-studies/.

[56] JJ Kathuria and Arjun Bhardwaj. 2022. Insider Threat: The Dangers
Within. https://cloud.google.com/blog/products/identity-security/insider-
threat-dangers-within/.

[57] Keller Jordan. 2024. 94% on CIFAR-10 in 3.29 Seconds on a Single GPU.
arXiv:2404.00498

[58] Paul A. Karger, Mary Ellen Zurko, Douglas W. Bonin, Andrew H. Mason, and
Clifford E. Kahn. 1991. A Retrospective on the VAX VMM Security Kernel. IEEE
Transactions on Software Engineering 17, 11 (1991), 1147–1165.

[59] Uri Katz, Guy Kaplan, and Avi Lumelsky. 2024. Shelltorch Explained: Multiple
Vulnerabilities in PyTorch Model Server (Torchserve) (CVSS 9.9, CVSS 9.8)
Walkthrough. https://www.oligo.security/blog/shelltorch-explained-multiple-
vulnerabilities-in-pytorch-model-server.

[60] Shaharyar Khan, Ilya Kabanov, Yunke Hua, and Stuart Madnick. 2022. A System-
atic Analysis of the Capital One Data Breach: Critical Lessons Learned. ACM
Transactions on Privacy and Security 26, 1 (2022), 1–29.

[61] Daehyeok Kim, Tianlong Yu, Hongqiang Harry Liu, Yibo Zhu, Jitu Padhye,
Shachar Raindel, Chuanxiong Guo, Vyas Sekar, and Srinivasan Seshan. 2019.
FreeFlow: Software-based Virtual RDMA Networking for Containerized Clouds.
In Proceedings of the 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI). Boston, MA.

[62] Max Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans Kaashoek,
Eddie Kohler, and Robert Morris. 2007. Information Flow Control for Standard
OS Abstractions. In Proceedings of the 21st ACM Symposium on Operating Systems
Principles (SOSP). Stevenson, WA.

[63] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng,
Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. 2023. Efficient
Memory Management for Large Language Model Serving with PagedAtten-
tion. In Proceedings of the 29th ACM Symposium on Operating Systems Principles
(SOSP). Koblenz, Germany.

[64] Kevin Lee, Adi Gangidi, and Mathew Oldham. 2024. Building Meta’s GenAI
Infrastructure. https://engineering.fb.com/2024/03/12/data-center-engineering/
building-metas-genai-infrastructure/.

[65] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and
Marcus Peinado. 2017. Inferring Fine-grained Control Flow Inside SGX Enclaves
with Branch Shadowing. In Proceedings of the 26th USENIX Security Symposium
(Security). Vancouver, Canada.

[66] Hugo Lefeuvre, David Chisnall, Marios Kogias, and Pierre Olivier. 2023. Towards
(Really) Safe and Fast Confidential I/O. In Proceedings of the 19th Workshop on
Hot Topics in Operating Systems (HotOS).

[67] Daniel Lemire. 2024. Estimating your memory bandwidth. https://lemire.me/
blog/2024/01/13/estimating-your-memory-bandwidth/.

[68] Mengyuan Li, Luca Wilke, Jan Wichelmann, Thomas Eisenbarth, Radu Teodor-
escu, and Yinqian Zhang. 2022. A Systematic Look at Ciphertext Side Channels
on AMD SEV-SNP. In Proceedings of the 43rd IEEE Symposium on Security and
Privacy (Oakland). San Francisco, CA.

[69] Mengyuan Li, Yinqian Zhang, Zhiqiang Lin, and Yan Solihin. 2019. Exploiting
Unprotected I/O Operations in AMD’s Secure Encrypted Virtualization. In

Proceedings of the 28th USENIX Security Symposium (Security). Santa Clara, CA.
[70] Shen Li. 2019. Getting Started with Distributed Data Parallel. https://docs.

pytorch.org/tutorials/intermediate/ddp_tutorial.html.
[71] Xupeng Li, Xuheng Li, Christoffer Dall, Ronghui Gu, Jason Nieh, Yousuf Sait, and

Gareth Stockwell. 2023. Enabling Realms with the Arm Confidential Compute
Architecture. ;login: The USENIX Magazine (July 2023).

[72] Peter Loscocco and Stephen Smalley. 2001. Integrating Flexible Support for
Security Policies into the Linux Operating System. In Proceedings of the 2001
USENIX Annual Technical Conference—FREENIX Track.

[73] Xiaoxuan Lou, Tianwei Zhang, Jun Jiang, and Yinqian Zhang. 2021. A Survey
of Microarchitectural Side-channel Vulnerabilities, Attacks, and Defenses in
Cryptography. ACM Computing Surveys (CSUR) 54, 6 (2021), 1–37.

[74] Laura Martinez. 2024. Advancing Security for Large Lan-
guage Models with NVIDIA GPUs and Edgeless Systems.
https://developer.nvidia.com/blog/advancing-security-for-large-language-
models-with-nvidia-gpus-and-edgeless-systems/.

[75] Jonathan M. McCune, Trent Jaeger, Stefan Berger, Ramón Cáceres, and Reiner
Sailer. 2006. Shamon: A System for Distributed Mandatory Access Control. In
Proceedings of the Annual Computer Security Applications Conference (ACSAC).

[76] Aastha Mehta, Mohamed Alzayat, Roberta De Viti, Björn B Brandenburg, Peter
Druschel, and Deepak Garg. 2022. Pacer: Comprehensive Network Side-Channel
Mitigation in the Cloud. In Proceedings of the 31st USENIX Security Symposium
(Security). Boston, MA.

[77] Roland Meier, Vincent Lenders, and Laurent Vanbever. 2022. ditto: WAN Traf-
fic Obfuscation at Line Rate. In Proceedings of the 2022 Annual Network and
Distributed System Security Symposium (NDSS). San Diego, CA.

[78] Microsoft. 2024. Overview of Azure Boost. https://learn.microsoft.com/en-
us/azure/azure-boost/overview.

[79] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. 2017. CacheZoom:
How SGX Amplifies the Power of Cache Attacks. In Cryptographic Hardware
and Embedded Systems (CHES).

[80] Apoorve Mohan, Mengmei Ye, Hubertus Franke, Mudhakar Srivatsa, Zhuoran
Liu, and Nelson Mimura Gonzalez. 2024. Securing AI Inference in the Cloud:
Is CPU-GPU Confidential Computing Ready?. In 2024 IEEE 17th International
Conference on Cloud Computing (CLOUD).

[81] Amin Mosayyebzadeh, Apoorve Mohan, Sahil Tikale, Mania Abdi, Nabil Schear,
Charles Munson, Trammell Hudson, Larry Rudolph, Gene Cooperman, Peter
Desnoyers, and Orran Krieger. 2019. Supporting Security Sensitive Tenants
in a Bare-Metal Cloud. In Proceedings of the 2019 USENIX Annual Technical
Conference (ATC). Renton, WA.

[82] National Insider Threat Special Interest Group. 2024. 2024 Insider Threat In-
cidents Report for the Department of Defense. https://cloud.google.com/blog/
products/identity-security/insider-threat-dangers-within/.

[83] NVIDIA Corporation. 2023. NVIDIA Device Attestation and CoRIM-based
Reference Measurement Sharing. https://docs.nvidia.com/networking/display/
ndacrmsv10/introduction.

[84] NVIDIA Corporation. 2024. CUDA Toolkit. https://developer.nvidia.com/cuda-
toolkit.

[85] NVIDIA Corporation. 2024. IPSec Full Offload. https://docs.nvidia.com/
networking/display/mlnxofedv24010331/ipsec+full+offload.

[86] NVIDIA Corporation. 2024. NCCL Net Plugin Documentation. https://github.
com/NVIDIA/nccl/blob/master/ext-net/README.md.

[87] NVIDIA Corporation. 2024. NVIDIA BlueField Modes of Operation. https://
docs.nvidia.com/doca/sdk/nvidia+bluefield+modes+of+operation/index.html.

[88] NVIDIA Corporation. 2024. NVIDIA BlueField Networking Platform. https:
//www.nvidia.com/en-us/networking/products/data-processing-unit/.

[89] NVIDIA Corporation. 2024. NVIDIA Collective Communications Library
(NCCL). https://developer.nvidia.com/nccl.

[90] NVIDIA Corporation. 2024. NVIDIA DOCA Software Framework. https://
developer.nvidia.com/networking/doca.

[91] NVIDIA Corporation. 2025. The NVIDIA Grace Blackwell Superchip. https:
//docs.nvidia.com/multi-node-nvlink-systems/multi-node-tuning-guide/.

[92] Department of Defense. 1985. Trusted Computer System Evaluation Criteria
(Orange Book). Technical Report DoD 5200.28-STD.

[93] OpenAI. 2024. Batch API - OpenAI API. https://platform.openai.com/docs/
guides/batch.

[94] Optrium. 2025. How Many People Are Needed to Run a Data Centre? https:
//optrium.co.uk/how-many-people-are-needed-to-run-a-data-centre/.

[95] Minkyung Park, Jaeseung Choi, Hyeonmin Lee, and Taekyoung Kwon. 2025.
PAVE: Information Flow Control for Privacy-preserving Online Data Processing
Services. In Proceedings of the 30th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS). Rotterdam,
The Netherlands.

[96] PCI-SIG. 2022. TEE Device Interface Security Protocol (TDISP). https://pcisig.
com/tee-device-interface-security-protocol-tdisp.

[97] Ivan Puddu, Moritz Schneider, Miro Haller, and Srdjan Capkun. 2021. Frontal
Attack: Leaking Control-Flow in SGX via the CPU Frontend. In Proceedings of
the 30th USENIX Security Symposium (Security). Virtual.

https://huggingface.co/docs/transformers/en/index
https://huggingface.co/docs/transformers/en/index
https://arxiv.org/abs/1803.05961
https://github.com/IBM/pytorch-communication-benchmarks
https://github.com/IBM/pytorch-communication-benchmarks
https://tdwi.org/articles/2021/11/02/immuta-survey-news.aspx
https://tdwi.org/articles/2021/11/02/immuta-survey-news.aspx
https://cw.infinibandta.org/document/dl/7781
https://cw.infinibandta.org/document/dl/7781
https://www.intel.com/content/www/us/en/products/details/network-io/ipu.html
https://www.intel.com/content/www/us/en/products/details/network-io/ipu.html
https://cloud.google.com/blog/products/identity-security/insider-threat-impact-studies/
https://cloud.google.com/blog/products/identity-security/insider-threat-impact-studies/
https://cloud.google.com/blog/products/identity-security/insider-threat-dangers-within/
https://cloud.google.com/blog/products/identity-security/insider-threat-dangers-within/
https://arxiv.org/abs/2404.00498
https://www.oligo.security/blog/shelltorch-explained-multiple-vulnerabilities-in-pytorch-model-server
https://www.oligo.security/blog/shelltorch-explained-multiple-vulnerabilities-in-pytorch-model-server
https://engineering.fb.com/2024/03/12/data-center-engineering/building-metas-genai-infrastructure/
https://engineering.fb.com/2024/03/12/data-center-engineering/building-metas-genai-infrastructure/
https://lemire.me/blog/2024/01/13/estimating-your-memory-bandwidth/
https://lemire.me/blog/2024/01/13/estimating-your-memory-bandwidth/
https://docs.pytorch.org/tutorials/intermediate/ddp_tutorial.html
https://docs.pytorch.org/tutorials/intermediate/ddp_tutorial.html
https://learn.microsoft.com/en-us/azure/azure-boost/overview
https://learn.microsoft.com/en-us/azure/azure-boost/overview
https://cloud.google.com/blog/products/identity-security/insider-threat-dangers-within/
https://cloud.google.com/blog/products/identity-security/insider-threat-dangers-within/
https://docs.nvidia.com/networking/display/ndacrmsv10/introduction
https://docs.nvidia.com/networking/display/ndacrmsv10/introduction
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://docs.nvidia.com/networking/display/mlnxofedv24010331/ipsec+full+offload
https://docs.nvidia.com/networking/display/mlnxofedv24010331/ipsec+full+offload
https://github.com/NVIDIA/nccl/blob/master/ext-net/README.md
https://github.com/NVIDIA/nccl/blob/master/ext-net/README.md
https://docs.nvidia.com/doca/sdk/nvidia+bluefield+modes+of+operation/index.html
https://docs.nvidia.com/doca/sdk/nvidia+bluefield+modes+of+operation/index.html
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://developer.nvidia.com/nccl
https://developer.nvidia.com/networking/doca
https://developer.nvidia.com/networking/doca
https://docs.nvidia.com/multi-node-nvlink-systems/multi-node-tuning-guide/
https://docs.nvidia.com/multi-node-nvlink-systems/multi-node-tuning-guide/
https://platform.openai.com/docs/guides/batch
https://platform.openai.com/docs/guides/batch
https://optrium.co.uk/how-many-people-are-needed-to-run-a-data-centre/
https://optrium.co.uk/how-many-people-are-needed-to-run-a-data-centre/
https://pcisig.com/tee-device-interface-security-protocol-tdisp
https://pcisig.com/tee-device-interface-security-protocol-tdisp

IOValve : Leakage-Free I/O Sandbox for Large-Scale Untrusted Data Processing CCS ’25, October 13–17, 2025, Taipei, Taiwan

[98] PyTorch Contributors. 2023. torchrun (Elastic Launch). https://pytorch.org/
docs/stable/elastic/run.html.

[99] Nazneen Rajani, Lewis Tunstall, Edward Beeching, Nathan Lambert, Alexan-
der M. Rush, and Thomas Wolf. 2023. No Robots. https://huggingface.co/
datasets/HuggingFaceH4/no_robots.

[100] Rhonda Ascierto and Todd Traver. 2021. Data center security: Reassessing physi-
cal, human and digital risks. Technical Report.

[101] Benjamin Rothenberger, Konstantin Taranov, Adrian Perrig, and Torsten Hoefler.
2021. ReDMArk: Bypassing RDMA Security Mechanisms. In Proceedings of the
30th USENIX Security Symposium (Security). Virtual.

[102] Indrajit Roy, Srinath T.V. Setty, Ann Kilzer, Vitaly Shmatikov, and Emmett
Witchel. 2010. Airavat: Security and Privacy for MapReduce. In Proceedings of
the 7th USENIX Symposium on Networked Systems Design and Implementation
(NSDI). San Jose, CA.

[103] Amir Sabzi, Rut Vora, Swati Goswami, Margo Seltzer, Mathias Lécuyer, and
Aastha Mehta. 2024. NetShaper: A Differentially Private Network Side-Channel
Mitigation System. In Proceedings of the 33rd USENIX Security Symposium (Secu-
rity). Philadelphia, PA.

[104] Reiner Sailer, Trent Jaeger, Enriquillo Valdez, Ramón Cáceres, Ronald Perez,
Stefan Berger, John Linwood Griffin, and Leendert van Doorn. 2005. Building
a MAC-Based Security Architecture for the Xen Open-Source Hypervisor. In
Proceedings of the Annual Computer Security Applications Conference (ACSAC).

[105] Philipp Schmid. 2024. Efficiently fine-tune Llama 3 with PyTorch FSDP and
Q-Lora. https://www.philschmid.de/fsdp-qlora-llama3.

[106] Philipp Schmid, Omar Sanseviero, Alvaro Bartolome, Leandro vonWerra, Daniel
Vila, Vaibhav Srivastav, Marc Sun, and Pedro Cuenca. 2024. Llama 3.1 - 405B,
70B & 8B with multilinguality and long context. https://huggingface.co/blog/
llama31.

[107] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus
Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. 2015. VC3: Trustwor-
thy Data Analytics in the Cloud using SGX. In Proceedings of the 36th IEEE
Symposium on Security and Privacy (Oakland). San Jose, CA.

[108] Helgi Sigurbjarnarson, Luke Nelson, Bruno Castro-Karney, James Bornholt,
Emina Torlak, and Xi Wang. 2018. Nickel: A Framework for Design and Verifi-
cation of Information Flow Control Systems. In Proceedings of the 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI). Carlsbad,
CA.

[109] Dimitrios Skarlatos, Mengjia Yan, Bhargava Gopireddy, Read Sprabery, Josep
Torrellas, and Christopher W. Fletcher. 2019. MicroScope: Enabling Microarchi-
tectural Replay Attacks. In Proceedings of the 46th Annual International Sympo-
sium on Computer Architecture (ISCA).

[110] John Stawinski. 2024. Playing with Fire - How We Executed a Critical Supply
Chain Attack on PyTorch. https://johnstawinski.com/2024/01/11/playing-with-
fire-how-we-executed-a-critical-supply-chain-attack-on-pytorch/.

[111] Mingtian Tan, Junpeng Wan, Zhe Zhou, and Zhou Li. 2021. Invisible Probe:
Timing Attacks with PCIe Congestion Side-channel. In Proceedings of the 42nd
IEEE Symposium on Security and Privacy (Oakland). San Francisco, CA.

[112] Konstantin Taranov, Benjamin Rothenberger, Adrian Perrig, and Torsten Hoefler.
2020. sRDMA: Efficient NIC-based Authentication and Encryption for Remote
Direct Memory Access. In Proceedings of the 2020 USENIX Annual Technical
Conference (ATC).

[113] Alpa Team. 2024. Alpa: Training and Serving Large-Scale Neural Networks
with Auto Parallelization. https://github.com/alpa-projects/alpa.

[114] Google Brain Team. 2024. TensorFlow: An Open Source Machine Learning
Framework. https://www.tensorflow.org/

[115] Uber Engineering Team. 2024. Horovod: Distributed Deep Learning Training
Framework for TensorFlow, Keras, PyTorch, and Apache MXNet. https://github.
com/horovod/horovod

[116] The kernel development community. [n. d.]. Sequence counters and sequential
locks. https://docs.kernel.org/locking/seqlock.html.

[117] The PyTorch Foundation. 2024. PyTorch. https://pytorch.org.
[118] Thomas Trouchkine, Guillaume Bouffard, and Jessy Clédière. 2019. Fault Injec-

tion Characterization on Modern CPUs: From the ISA to the Micro-architecture.
In IFIP International Conference on Information Security Theory and Practice.

[119] United States Attorney’s Office, Eastern District of California. 2023. Former
Navy IT Manager Sentenced to Over 5 Years in Prison for Hacking Com-
puter Database. https://www.justice.gov/usao-edca/pr/former-navy-it-manager-
sentenced-over-5-years-prison-hacking-computer-database.

[120] Stephan Van Schaik, Alex Seto, Thomas Yurek, Adam Batori, Bader AlBassam,
Daniel Genkin, Andrew Miller, Eyal Ronen, Yuval Yarom, and Christina Garman.
2024. SoK: SGX.Fail: How Stuff Gets eXposed. In Proceedings of the 45th IEEE
Symposium on Security and Privacy (Oakland). San Francisco, CA.

[121] S. VanDeBogart, P. Efstathopoulos, E. Kohler, M. Krohn, C. Frey, D. Ziegler, F.
Kaashoek, R. Morris, and D. Mazieres. 2007. Labels and Event Processes in the
Asbestos Operating System. ACM Transactions on Computer Systems (TOCS) 25,
4 (December 2007), 11:1–43.

[122] Stavros Volos, Cédric Fournet, Jana Hofmann, Boris Köpf, and Oleksii Oleksenko.
2024. Principled Microarchitectural Isolation on Cloud CPUs. In Proceedings of
the 31st ACM Conference on Computer and Communications Security (CCS). Salt
Lake City, UT.

[123] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. 1993.
Efficient Software-Based Fault Isolation. ACM SIGOPS Operating Systems Review
27, 5 (Dec. 1993), 203–216.

[124] Han Wang, Linfeng Zhang, Jiequn Han, et al. 2018. DeePMD-kit: A deep
learning package for many-body potential energy representation and molecular
dynamics. Computer Physics Communications 228 (2018), 178–184.

[125] Robert Watson, Wayne Morrison, Chris Vance, and Brian Feldman. 2003. The
TrustedBSD MAC Framework: Extensible Kernel Access Control for FreeBSD
5.0. In Proceedings of the 2003 USENIX Annual Technical Conference.

[126] Roy Weiss, Daniel Ayzenshteyn, and Yisroel Mirsky. 2024. What Was Your
Prompt? A Remote Keylogging Attack on AI Assistants. In Proceedings of the
33rd USENIX Security Symposium (Security). Philadelphia, PA.

[127] Charles V Wright, Scott E Coull, and Fabian Monrose. 2009. Traffic Morphing:
An Efficient Defense Against Statistical Traffic Analysis. In Proceedings of the
16th Annual Network and Distributed System Security Symposium (NDSS). San
Diego, CA.

[128] Jiarong Xing, Kuo-Feng Hsu, Yiming Qiu, Ziyang Yang, Hongyi Liu, and Ang
Chen. 2022. Bedrock: Programmable Network Support for Secure RDMA Sys-
tems. In Proceedings of the 31st USENIX Security Symposium (Security). Boston,
MA.

[129] Jiarong Xing, Qiao Kang, and Ang Chen. 2020. NetWarden: Mitigating Net-
work Covert Channels while Preserving Performance. In Proceedings of the 29th
USENIX Security Symposium (Security). Boston, MA.

[130] Wenjie Xiong and Jakub Szefer. 2021. Survey of Transient Execution Attacks
and Their Mitigations. ACM Computing Surveys (CSUR) 54, 3 (May 2021), 1–36.

[131] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth, Tavis
Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar. 2009. Native
Client: A Sandbox for Portable, Untrusted x86 Native Code. In Proceedings of
the 30th IEEE Symposium on Security and Privacy (Oakland). Oakland, CA.

[132] Shui Yu, Wanlei Zhou, Robin Doss, and Weijia Jia. 2010. Traceback of DDoS
Attacks using Entropy Variations. IEEE Transactions on Parallel and Distributed
Systems 22, 3 (2010), 412–425.

[133] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières.
2006. Making Information Flow Explicit in HiStar. In Proceedings of the 7th
USENIX Symposium on Operating Systems Design and Implementation (OSDI).
Seattle, WA.

[134] Nickolai Zeldovich, Silas Boyd-Wickizer, and David Mazières. 2008. Securing
Distributed Systems with Information Flow Control. In Proceedings of the 5th
USENIX Symposium on Networked Systems Design and Implementation (NSDI).
San Francisco, CA.

[135] Yan Zhai, Lichao Yin, Jeffrey S Chase, Thomas Ristenpart, and Michael M Swift.
2016. CQSTR: Securing Cross-Tenant Applications with Cloud Containers. In
Proceedings of the 7th ACM Symposium on Cloud Computing (SoCC).

[136] Chuqi Zhang, Rahul Priolkar, Yuancheng Jiang, Yuan Xiao, Mona Vij, Zhenkai
Liang, and Adil Ahmad. 2025. Erebor: A Drop-In Sandbox Solution for Private
Data Processing in Untrusted Confidential Virtual Machines. In Proceedings of
the 20th European Conference on Computer Systems (EuroSys). Rotterdam, The
Netherlands.

[137] Duo Zhang, Xinzijian Liu, Xiangyu Zhang, Chengqian Zhang, Chun Cai,
Hangrui Bi, Yiming Du, Xuejian Qin, Anyang Peng, Jiameng Huang, et al.
2024. DPA-2: a large atomic model as a multi-task learner. npj Computational
Materials 10, 1 (2024), 293.

[138] Xiaokuan Zhang, Jihun Hamm, Michael K Reiter, and Yinqian Zhang. 2019. Sta-
tistical Privacy for Streaming Traffic. In Proceedings of the 2019 Annual Network
and Distributed System Security Symposium (NDSS). San Diego, CA.

[139] Yanli Zhao, Rohan Varma, Chien-Chin Huang, Shen Li, Min Xu, and Alban
Desmaison. 2022. Introducing PyTorch Fully Sharded Data Parallel (FSDP)
API. https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-
api/.

[140] Ziqiao Zhou, Yizhou Shan, Weidong Cui, Xinyang Ge, Marcus Peinado, and
Andrew Baumann. 2023. Core slicing: closing the gap between leaky confidential
VMs and bare-metal cloud. In Proceedings of the 17th USENIX Symposium on
Operating Systems Design and Implementation (OSDI). Boston, MA.

[141] Jianping Zhu, Rui Hou, XiaoFeng Wang, Wenhao Wang, Jiangfeng Cao, Boyan
Zhao, Zhongpu Wang, Yuhui Zhang, Jiameng Ying, Lixin Zhang, and Dan
Meng. 2020. Enabling Rack-Scale Confidential Computing using Heterogeneous
Trusted Execution Environment. In Proceedings of the 41st IEEE Symposium on
Security and Privacy (Oakland). San Francisco, CA.

[142] Andrew D Zonenberg, Antony Moor, Daniel Slone, Lain Agan, and Mario Cop.
2025. Extraction of Secrets from 40nm CMOS Gate Dielectric Breakdown
Antifuses by FIB Passive Voltage Contrast. In Proceedings of the 19th USENIX
Workshop on Offensive Technologies (WOOT).

https://pytorch.org/docs/stable/elastic/run.html
https://pytorch.org/docs/stable/elastic/run.html
https://huggingface.co/datasets/HuggingFaceH4/no_robots
https://huggingface.co/datasets/HuggingFaceH4/no_robots
https://www.philschmid.de/fsdp-qlora-llama3
https://huggingface.co/blog/llama31
https://huggingface.co/blog/llama31
https://johnstawinski.com/2024/01/11/playing-with-fire-how-we-executed-a-critical-supply-chain-attack-on-pytorch/
https://johnstawinski.com/2024/01/11/playing-with-fire-how-we-executed-a-critical-supply-chain-attack-on-pytorch/
https://github.com/alpa-projects/alpa
https://www.tensorflow.org/
https://github.com/horovod/horovod
https://github.com/horovod/horovod
https://docs.kernel.org/locking/seqlock.html
https://pytorch.org
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/

	Abstract
	1 Introduction
	2 Background
	2.1 Network Covert Channels
	2.2 Data Processing Unit (DPU)
	2.3 Collective Communication

	3 Model and Goal
	3.1 Threat Model
	3.2 Goal

	4 Design
	4.1 Hardware and System Configuration
	4.2 Provisioning and Attestation
	4.3 Congestion-Free Memory Transfer
	4.4 Traffic Regularization

	5 Implementation
	5.1 DPU Configuration
	5.2 Congestion-Free Memory Transfer
	5.3 Traffic Regularization
	5.4 NCCL Compatibility Layer

	6 Evaluation
	6.1 Experimental Setup
	6.2 Covert Channel Robustness
	6.3 Micro-benchmark: Network Performance
	6.4 Real-World Applications

	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

