WarningBird: Detecting Suspicious URLs in Twitter Stream

NDSS 2012

Sangho Lee and Jong Kim
POSTECH, Korea

February 8, 2012
Suspicious URLs in Twitter

- Twitter suffers from malicious tweets.
 - Containing URLs for spam, phishing, ...
- Many detection schemes rely on
 - Features of Twitter accounts and msgs.
 - Features of URL and content
- Many evading techniques also exist.
 - Feature fabrication
 - Conditional redirection
Conditional Redirection

- Attackers distribute initial URLs of conditional redirect chains via tweets.
- Conditional redirection servers will lead
 - Normal browsers to malicious landing pages
 - Crawlers to benign landing pages
 - User agent, IP addresses, repeated visiting, ...

Misclassifications can occur
Motivation and Goal

• Attackers can evade previous detection schemes.
 – Selectively provide malicious content to normal browsers not to investigators

• We propose a novel suspicious URL detection system for Twitter.
 – Be robust against evasion techniques
 – Detects suspicious URLs in real time
Outline

• Introduction
• **Case Study**
• Proposed Scheme
• Evaluation
• Discussion and Conclusion
Case Study
blackraybansunglasses.com

6584 different accounts & short URLs
(3% of daily sample)

Crawlers cannot see these pages
Random spam pages

Random spam page for normal browsers

google.com for crawlers

NDSS 2012
Outline

• Introduction
• Case Study

• Proposed Scheme
 – Basic Idea
 – System Overview
 – Derived Features

• Evaluation
• Discussion and Conclusion
Basic Idea

• Attackers need to reuse redirection servers.
 – No infinite redirection servers
• We analyze a group of correlated URL chains.
 – To detect redirection servers reused
 – To derive features of the correlated URL chains
System Overview

• Data collection
 – Collect tweets with URLs from public timeline
 – Visit each URL to obtain URL chains and IP addresses

• Feature extraction
 – Group domains with the same IP addresses
 – Find entry point URLs
 – Generate feature vectors for each entry point
System Overview (continued)

- **Training**
 - Label feature vectors using account status info.
 - suspended ⇒ malicious, active ⇒ benign
 - Build classification models
- **Classification**
 - Classify suspicious URLs
Features

• Correlated URL chains
 – Length of URL redirect chain
 – Frequency of entry point URL
 – # of different initial and landing URLs
• Tweet context information
 – # of different Twitter sources
 – Standard deviation of account creation dates
 – Standard deviation of friends-followers ratios

NDSS 2012
Outline

• Introduction
• Case Study
• Proposed Scheme
• Evaluation
 – System Setup and Data Collection
 – Training Classifiers
 – Data Analysis
 – Detection Efficiency
 – Running Time
• Discussion and Conclusion
System Setup and Data Collection

• System specification
 – Two Intel Quad Core Xeon 2.4 GHz CPUs
 – 24 GiB main memory

• Data collection
 – Twitter Streaming API
 – One percent samples from Twitter public timeline (Spritzer role)
 – 27,895,714 tweets with URLs between April 8 and August 8, 2011 (122 days)
Training Classifiers

• Training dataset
 – Tweets between May 10 and July 8
 – 183,113 benign and 41,721 malicious entry point URLs

• Classification algorithm
 – L2-regularized logistic regression

• 10-fold cross validation
 – FP: 1.64%, FN: 10.69%
Data Analysis

- Relatively small number of new suspicious URLs
 - We detect suspicious URLs that are not detected or blocked by Twitter.

3758 entry point URLs (on average, daily)

283 suspicious URLs
20 false positive URLs
30 new suspicious URLs
Data Analysis (continued)

- Reoccurrences of May 10’s URLs
 - Up to 12% benign & 52% suspicious URLs
Detection Efficiency

- We measure the time difference between
 - When WarningBird detects suspicious accounts
 - When Twitter suspends the accounts

Avg. time difference: 13.5 min

more than 20 hours
Running Time

• Processing time for each URL: 28.31 ms
 – Redirect chain crawling: 24.20 ms
 • Hundred crawling threads
 – Domain grouping: 2.00 ms
 – Feature extraction: 1.62 ms
 – Classification: 0.48 ms

• Our system can classify about 127,000 URLs per hour.
 – About 12.7% of all public tweets with URLs per hour
Outline

• Introduction
• Case Study
• Proposed Scheme
• Evaluation
• Discussion and Conclusion
Discussion

• Evasion is possible but restricted.
 – Do not reuse redirection servers
 • Need extra $ (to buy compromised hosts)
 • Need more effort to take down hosts
 – Reduce the rate of malicious tweets
 • Less effective
Conclusion

• We proposed a new suspicious URL detection system for Twitter.
• Our system is robust against feature fabrication and conditional redirection.
• Evaluation results show accuracy and efficiency.